Review Articles

Statistical inference for nonignorable missing-data problems: a selective review

Niansheng Tang ,

Key Lab of Statistical Modelling and Data Analysis of Yunnan Province, Yunnan University, Kunming, People's Republic of China

nstang@ynu.edu.cn

Yuanyuan Ju

Key Lab of Statistical Modelling and Data Analysis of Yunnan Province, Yunnan University, Kunming, People's Republic of China

Pages 105-133 | Received 22 Aug. 2018, Accepted 08 Sep. 2018, Published online: 05 Oct. 2018,
  • Abstract
  • Full Article
  • References
  • Citations

ABSTRACT

Nonignorable missing data are frequently encountered in various settings, such as economics, sociology and biomedicine. We review statistical inference for nonignorable missing-data problems, including estimation, influence analysis and model selection. For estimation of mean functionals, we review semiparametric method and empirical likelihood (EL) approach. For estimation of parameters in exponential family nonlinear structural equation models, we introduce expectation-maximisation algorithm, Bayesian approach, and Bayesian EL method. For influence analysis, we investigate the case-deletion method and local influence analysis method from the frequentist and Bayesian viewpoints. For model selection, we present the modified Akaike information criterion and penalised method.

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. Breakthroughs in statistics. New York: Springer[Google Scholar]
  2. Bentler, P. M., & Wu, E. J. C. (2002). EQS6.0 for windows user guide. Encino, CA: Multivariate Software[Google Scholar]
  3. Berger, J. O. (1994). An overview of robust Bayesian analysis. Test, 3, 5124. doi: 10.1007/BF02562676 [Google Scholar]
  4. Caner, M., & Zhang, H. H. (2014). Adaptive elastic net for generalized methods of moments. Journal of Business & Economic Statistics, 32, 3047. doi: 10.1080/07350015.2013.836104 [Taylor & Francis Online], [Google Scholar]
  5. Chang, T., & Kott, P. S. (2008). Using calibration weighting to adjust for nonresponse under a plausible model. Biometrika, 95, 555571. doi: 10.1093/biomet/asn022 [Google Scholar]
  6. Chen, S. X., & Kim, J. K. (2017). Semiparametric fractional imputation using empirical likelihood in survey sampling. Statistical Theory and Related Fields, 1, 6981. doi: 10.1080/24754269.2017.1328244 [Taylor & Francis Online], [Google Scholar]
  7. Chen, J., Sitter, R. R., & Wu, C. (2002). Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys. Biometrika, 89, 230237. doi: 10.1093/biomet/89.1.230 [Google Scholar]
  8. Cheng, P. E. (1994). Nonparametric estimation of mean functionals with data missing at random. Journal of the American Statistical Association, 89, 8187. doi: 10.1080/01621459.1994.10476448 [Taylor & Francis Online], [Google Scholar]
  9. Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19, 1518[Taylor & Francis Online], [Google Scholar]
  10. Cook, R. D. (1986). Assessment of local influence. Journal of the Royal Statistical Society Series B, 48, 133169[Google Scholar]
  11. Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. New York: Chapman and Hall[Google Scholar]
  12. Cui, H. J., Li, R. Z., & Zhong, W. (2015). Model-free feature screening for ultrahigh dimensional discriminant analysis. Journal of the American Statistical Association, 110, 630641. doi: 10.1080/01621459.2014.920256 [Taylor & Francis Online], [Google Scholar]
  13. Daniels, M. J., & Hogan, J. W. (2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis. London: Chapman and Hall[Crossref], [Google Scholar]
  14. Daniels, M. J., Wang, C., & Marcus, B. H. (2014). Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates. Biometrics, 70, 6272. doi: 10.1111/biom.12121 [Google Scholar]
  15. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B, 39, 138[Crossref], [Google Scholar]
  16. Dey, D. K., Ghosh, S. K., & Lou, K. R. (1996). On local sensitivity measures in Bayesian analysis. Bayesian Robustness, 29, 2140. doi: 10.1214/lnms/1215453059 [Google Scholar]
  17. Ding, X. B., & Wang, Q. H (2011). Fusion-refinement procedure for dimension reduction with missing response at random. Journal of the American Statistical Association, 106, 11931207. doi: 10.1198/jasa.2011.tm10573 [Taylor & Francis Online], [Google Scholar]
  18. Fan, J., Feng, Y., & Song, R. (2011). Nonparametric independence screening in sparse ultra-high-dimensional additive models. Journal of the American Statistical Association, 106, 544557. doi: 10.1198/jasa.2011.tm09779 [Taylor & Francis Online], [Google Scholar]
  19. Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 13481360. doi: 10.1198/016214501753382273 [Taylor & Francis Online], [Google Scholar]
  20. Fan, J., & Lv, J. C. (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B, 70, 849911. doi: 10.1111/j.1467-9868.2008.00674.x [Google Scholar]
  21. Fan, J., & Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics, 32, 928961. doi: 10.1214/009053604000000256 [Google Scholar]
  22. Fang, F., & Shao, J. (2016). Model selection with nonignorable nonresponse. Biometrika, 103, 861874. doi: 10.1093/biomet/asw039 [Google Scholar]
  23. Gelman, A. (1996). Inference and monitoring convergence. In W. R. Gilks, S. Richardson, & D. J. Speigelhalter (Eds.), Markov chain Monte Carlo in practice (pp. 131144). London: Chapman and Hall[Google Scholar]
  24. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721741. doi: 10.1109/TPAMI.1984.4767596 [Google Scholar]
  25. Gustafson, P. (1996a). Local sensitivity of posterior expectations. Annals of Statistics, 24, 174195. doi: 10.1214/aos/1033066205 [Google Scholar]
  26. Gustafson, P. (1996b). Local sensitivity of inferences to prior marginals. Journal of the American Statistical Association, 91, 774781. doi: 10.1080/01621459.1996.10476945 [Taylor & Francis Online], [Google Scholar]
  27. Hansen, L. P. (1982). Large sample properties of generalised method of moments estimators. Econometrica, 50, 10291054. doi: 10.2307/1912775 [Google Scholar]
  28. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97109. doi: 10.1093/biomet/57.1.97 [Google Scholar]
  29. Hens, N., Aerts, M., & Molenberghs, G. (2006). Model selection for incomplete and design-based samples. Statistics in Medicine, 25, 25022520. doi: 10.1002/sim.2559 [Google Scholar]
  30. Horvitz, D. G., & Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American statistical Association, 47, 663685. doi: 10.1080/01621459.1952.10483446 [Taylor & Francis Online], [Google Scholar]
  31. Ibrahim, J. G. (1990). Incomplete data in generalized linear models. Journal of the American Statistical Association, 85, 765769. doi: 10.1080/01621459.1990.10474938 [Taylor & Francis Online], [Google Scholar]
  32. Ibrahim, J. G., Chen, M. H., & Lipsitz, S. R. (2001). Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable. Biometrika, 88, 551564. doi: 10.1093/biomet/88.2.551 [Google Scholar]
  33. Ibrahim, J. G., Chen, M. H., Lipsitz, S. R., & Herring, A. H. (2005). Missing-data methods for generalized linear models. Journal of the American Statistical Association, 100, 332346. doi: 10.1198/016214504000001844 [Taylor & Francis Online], [Google Scholar]
  34. Ibrahim, J. G., Zhu, H. T., & Tang, N. S. (2008). Model selection criterion for missing data problems using the EM algorithm. Journal of the American Statistical Association, 103, 16481658. doi: 10.1198/016214508000001057 [Taylor & Francis Online], [Google Scholar]
  35. Jansen, I., Molenberghs, G., Aerts, M., Thijs, H., & Van Steen, K. (2003). A local influence approach applied to binary data from a psychiatric study. Biometrics, 59, 410419. doi: 10.1111/1541-0420.00048 [Google Scholar]
  36. Jiang, J. M., Nguyen, T., & Rao, J. S. (2015). The E-MS algorithm: Model selection with incomplete data. Journal of the American Statistical Association, 110, 11361147. doi: 10.1080/01621459.2014.948545 [Taylor & Francis Online], [Google Scholar]
  37. Jiang, D. P., Zhao, P. Y., & Tang, N. S. (2016). A propensity score adjustment method for regression models with nonignorable missing covariates. Computational Statistics and Data Analysis, 94, 98119. doi: 10.1016/j.csda.2015.07.017 [Google Scholar]
  38. Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: Structural equation modeling with the SIMPLIS command language. Hover: Erlbaum[Google Scholar]
  39. Kaciroti, N. A., & Raghunathan, T. (2014). Bayesian sensitivity analysis of incomplete data: Bridging pattern-mixture and selection models. Statistics in Medicine, 33, 48414857. doi: 10.1002/sim.6302 [Google Scholar]
  40. Kim, J. K., & Shao, J. (2013). Statistical methods for handling incomplete data. Journal of Applied Statistics, 41, 27792780[Google Scholar]
  41. Kim, J. K., & Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonignorable missing data. Journal of the American Statistical Association, 106, 157165. doi: 10.1198/jasa.2011.tm10104 [Taylor & Francis Online], [Google Scholar]
  42. Lai, P., Liu, Y. M., Liu, Z., & Wan, Y. (2017). Model free feature screening for ultrahigh dimensional data with responses missing at random. Computational Statistics and Data Analysis, 105, 201216. doi: 10.1016/j.csda.2016.08.008 [Google Scholar]
  43. Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963974. doi: 10.2307/2529876 [Google Scholar]
  44. Lam, C., & Fan, J. (2008). Profile-kernel likelihood inference with diverging number of parameters. Annals of Statistics, 36, 22322260. doi: 10.1214/07-AOS544 [Google Scholar]
  45. Lavine, M. (1991). Sensitivity in Bayesian statistics: The prior and the likelihood. Journal of the American Statistical Association, 86, 396399. doi: 10.1080/01621459.1991.10475055 [Taylor & Francis Online], [Google Scholar]
  46. Lee, S. Y., & Tang, N. S. (2004). Local influence analysis of nonlinear structural equation models. Psychometrika, 69, 573592. doi: 10.1007/BF02289856 [Google Scholar]
  47. Lee, S. Y., & Tang, N. S. (2006a). Bayesian analysis of structural equation models with mixed exponential family and ordered categorical data. British Journal of Mathematical and Statistical Psychology, 59, 151172. doi: 10.1348/000711005X81403 [Google Scholar]
  48. Lee, S. Y., & Tang, N. S. (2006b). Bayesian analysis of nonlinear structural equation models with nonignorable missing data. Psychometrika, 71, 541564. doi: 10.1007/s11336-006-1177-1 [Google Scholar]
  49. Lee, S. Y., & Tang, N. S. (2006c). Analysis of nonlinear structural equation models with nonignorable missing covariates and ordered categorical data. Statistica Sinica, 16, 11171141[Google Scholar]
  50. Lee, S. Y., & Zhu, H. T. (2002). Maximum likelihood estimation of nonlinear structural equation models. Psychometrika, 67, 189210. doi: 10.1007/BF02294842 [Google Scholar]
  51. Leng, C., & Tang, C. Y. (2012). Penalized empirical likelihood and growing dimensional general estimating equations. Biometrika, 99, 703716. doi: 10.1093/biomet/ass014 [Google Scholar]
  52. Lesaffre, E., & Verbeke, G. (1998). Local influence in linear mixed models. Biometrics, 54, 570582. doi: 10.2307/3109764 [Google Scholar]
  53. Li, G., Peng, H., Zhang, J., & Zhu, L. X. (2012). Robust rank correlation based screening. The Annals of Statistics, 40, 18461877. doi: 10.1214/12-AOS1024 [Google Scholar]
  54. Li, G., Peng, H., & Zhu, L. (2011). Nonconcave penalized M-estimation with a diverging number of parameters. Statistica Sinica, 21, 391419[Google Scholar]
  55. Li, R., Zhong, W., & Zhu, L. P. (2012). Feature screening via distance correlation learning. Journal of the American Statistical Association, 107, 11291139. doi: 10.1080/01621459.2012.695654 [Taylor & Francis Online], [Google Scholar]
  56. Liang, H., Wang, S., & Carroll, R. J. (2007). Partially linear models with missing response variables and error-prone covariates. Biometrika, 94, 185. doi: 10.1093/biomet/asm010 [Google Scholar]
  57. Linero, A. R., & Daniels, M. J. (2015). A flexible Bayesian approach to monotone missing data in longitudinal studies with nonignorable missingness with application to an acute Schizophrenia clinical trial. Journal of the American Statistical Association, 110, 4555. doi: 10.1080/01621459.2014.969424 [Taylor & Francis Online], [Google Scholar]
  58. Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. Hoboken, NJ: Wiley[Google Scholar]
  59. Liu, T. Q., Lee, K. Y., & Zhao, H. Y. (2016). Ultrahigh dimensional feature selection via Kernel canonical correlation analysis. arXiv preprint arXiv:1604.07354. [Google Scholar]
  60. Liu, C., & Rubin, D. B. (1994). The ECME algorithm: A simple extension of em and ecm with faster monotone convergence. Biometrika, 81, 633648. doi: 10.1093/biomet/81.4.633 [Google Scholar]
  61. Long, Q., & Johnson, B. A. (2015). Variable selection in the presence of missing data: Resampling and imputation. Biostatistics (Oxford, England), 16, 596610. doi: 10.1093/biostatistics/kxv003 [Google Scholar]
  62. Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B, 44, 226233[Web of Science ®], [Google Scholar]
  63. McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. London: Chapman & Hall[Google Scholar]
  64. Meng, X. L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80, 267278. doi: 10.1093/biomet/80.2.267 [Google Scholar]
  65. Meng, X. L., & Schilling, S. (1996). Fitting full-information item factor models and an empirical investigation of bridge sampling. Journal of the American Statistical Association, 91, 12541267. doi: 10.1080/01621459.1996.10476995 [Taylor & Francis Online], [Google Scholar]
  66. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state by fast computing machines. Journal of Chemical Physics, 21, 10871092. doi: 10.1063/1.1699114 [Google Scholar]
  67. Millar, R. B., & Stewart, W. S. (2007). Assessment of locally influential observations in Bayesian models. Bayesian Analysis, 2, 365383. doi: 10.1214/07-BA216 [Google Scholar]
  68. Muthén, L. K., & Muthén, B. O. (2017). Mplus user's guide (8th ed.). Los Angeles, CA: Muthén & Muthén[Google Scholar]
  69. Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237249. doi: 10.1093/biomet/75.2.237 [Google Scholar]
  70. Owen, A. B. (2001). Empirical likelihood. New York: Chapman and Hall/CRC[Google Scholar]
  71. Poon, W. Y., & Poon, Y. S. (1999). Conformal normal curvature and assessment of local influence. Journal of the Royal Statistical Society Series B, 61, 5161. doi: 10.1111/1467-9868.00162 [Google Scholar]
  72. Qin, J., Leung, D., & Shao, J. (2002). Estimation with survey data under nonignorable nonresponse or informative sampling. Journal of the American Statistical Association, 97, 193200. doi: 10.1198/016214502753479338 [Taylor & Francis Online], [Google Scholar]
  73. Qin, J., Zhang, B., & Leung, D. H. Y. (2009). Empirical likelihood in missing data problems. Journal of the American Statistical Association, 104, 14921503. doi: 10.1198/jasa.2009.tm08163 [Taylor & Francis Online], [Google Scholar]
  74. Riddles, M. K. (2013). Propensity score adjusted method for missing data (Doctoral dissertation). Iowa State University. [Google Scholar]
  75. Riddles, M. K., Kim, J. K., & Im, J. (2016). A propensity-score-adjustment method for nonignorable nonresponse. Journal of Survey Statistics and Methodology, 4, 215245. doi: 10.1093/jssam/smv047 [Google Scholar]
  76. Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American statistical Association, 89, 846866. doi: 10.1080/01621459.1994.10476818 [Taylor & Francis Online], [Google Scholar]
  77. Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581592. doi: 10.1093/biomet/63.3.581 [Google Scholar]
  78. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464. doi: 10.1214/aos/1176344136 [Google Scholar]
  79. Shao, J., & Wang, L. (2016). Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika, 103, 175187. doi: 10.1093/biomet/asv071 [Google Scholar]
  80. Shen, C. W., & Chen, Y. H. (2012). Model selection for generalized estimating equations accommodating dropout missingness. Biometrics, 68, 10461054. doi: 10.1111/j.1541-0420.2012.01758.x [Google Scholar]
  81. Shen, C. W., & Chen, Y. H. (2013). Model selection of generalized estimating equations with multiply imputed longitudinal data. Biometrical Journal, 55, 899911. doi: 10.1002/bimj.201200236 [Google Scholar]
  82. Shi, X. Y., Zhu, H. T., & Ibrahim, J. G. (2009). Local influence for generalized linear models with missing covariates. Biometrics, 65, 11641174. doi: 10.1111/j.1541-0420.2008.01179.x [Google Scholar]
  83. Spieglhalter, D. J., Thomas, A., Best, N. G., & Lunn, D. (2003). WinBUGS user manual (Version 1.4). Cambridge: MRC Biostatistics Unit[Google Scholar]
  84. Stute, W., Xue, L., & Zhu, L. (2007). Empirical likelihood inference in nonlinear errors-in-covariables models with validation data. Journal of the American Statistical Association, 102, 332346. doi: 10.1198/016214506000000816 [Taylor & Francis Online], [Google Scholar]
  85. Tang, N. S., Chow, S. M., Ibrahim, J. G., & Zhu, H. T. (2017). Bayesian sensitivity analysis of a nonlinear dynamic factor analysis model with nonparametric prior and possible nonignorable missingness. Psychometrika, 82, 129. doi: 10.1007/s11336-017-9587-4 [Google Scholar]
  86. Tang, N. S., & Tang, L. (2018). Estimation and variable selection in generalized partially nonlinear models with nonignorable missing responses. Statistics and its Interface, 11, 118. doi: 10.4310/SII.2018.v11.n1.a1 [Google Scholar]
  87. Tang, N., Yan, X., & Zhao, P. (2018). Exponentially tilted likelihood inference on growing dimensional unconditional moment models. Journal of Econometrics, 202, 5774. doi: 10.1016/j.jeconom.2017.08.018 [Google Scholar]
  88. Tang, N. S., & Zhao, P. Y. (2013). Empirical likelihood-based inference in nonlinear regression models with missing responses at random. Statistics, 47, 11411159. doi: 10.1080/02331888.2012.658807 [Taylor & Francis Online], [Google Scholar]
  89. Tang, N. S., Zhao, P. Y., & Zhu, H. T. (2014). Empirical likelihood for estimating equations with nonignorably missing data. Statistica Sinica, 24, 723[Google Scholar]
  90. Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American statistical Association, 82, 528540. doi: 10.1080/01621459.1987.10478458 [Taylor & Francis Online], [Google Scholar]
  91. Troxel, A. B., Ma, G., & Heitjan, D. F. (2004). An index of local sensitivity to nonignorability. Statistica Sinica, 14, 12211237[Google Scholar]
  92. Verbeke, G., Molenberghs, G., Thijs, H., Lesaffre, E., & Kenward, M. G. (2001). Sensitivity analysis for nonrandom dropout: A local influence approach. Biometrics, 57, 714. doi: 10.1111/j.0006-341X.2001.00007.x [Google Scholar]
  93. Wang, D., & Chen, S. X (2009). Empirical likelihood for estimating equations with missing values. Annals of Statistics, 37, 490517. doi: 10.1214/07-AOS585 [Google Scholar]
  94. Wang, Q. H., & Li, Y. J. (2018). How to make model-free feature screening approaches for full data applicable to the case of missing response? Scandinavian Journal of Statistics, 45, 324346. doi: 10.1111/sjos.12290 [Google Scholar]
  95. Wang, Q. H., & Qin, Y. S. (2010). Empirical likelihood confidence bands for distribution functions with missing responses. Journal of Statistical Planning and Inference, 140, 27782789. doi: 10.1016/j.jspi.2010.03.044 [Google Scholar]
  96. Wang, Q. H., & Rao, J. N. K. (2002). Empirical likelihood-based inference under imputation for missing response data. Annals of Statistics, 30, 896924. doi: 10.1214/aos/1028674845 [Google Scholar]
  97. Wang, S., Shao, J., & Kim, J. K. (2014). An instrumental variable approach for identification and estimation with nonignorable nonresponse. Statistica Sinica, 24, 10971116[Google Scholar]
  98. Wei, B. C. (1998). Exponential family nonlinear models. Singapore: Springer-Verlag[Google Scholar]
  99. Wei, Y., Ma, Y. Y., & Carroll, R. J. (2012). Multiple imputation in quantile regression. Biometrika, 99, 423438. doi: 10.1093/biomet/ass007 [Google Scholar]
  100. Wei, G. G., & Tanner, M. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Publications of the American Statistical Association, 85, 699704. doi: 10.1080/01621459.1990.10474930 [Taylor & Francis Online], [Google Scholar]
  101. Xu, C., & Chen, J. H. (2014). The sparse MLE for ultrahigh-dimensional feature screening. Journal of the American Statistical Association, 109, 12571269. doi: 10.1080/01621459.2013.879531 [Taylor & Francis Online], [Google Scholar]
  102. Xue, L. (2009). Empirical likelihood for linear models with missing responses. Journal of Multivariate Analysis, 100, 13531366. doi: 10.1016/j.jmva.2008.12.009 [Google Scholar]
  103. Zhang, Y. Q., & Tang, N. S. (2017). Bayesian local influence analysis of general estimating equations with nonignorable missing data. Computational Statistics and Data Analysis, 105, 184200. doi: 10.1016/j.csda.2016.08.010 [Google Scholar]
  104. Zhao, S. D. H., & Li, Y. (2014). Score test variable screening. Biometrics, 70, 862871. doi: 10.1111/biom.12209 [Google Scholar]
  105. Zhao, Y. Y., & Tang, N. S. (2015). Maximum-likelihood estimation and influence analysis in multivariate skew-normal reproductive dispersion mixed models for longitudinal data. Mathematische Operationsforschung Und Statistik, 49, 13481365[Google Scholar]
  106. Zhao, P. Y., Tang, M. L., & Tang, N. S. (2013). Robust estimation of distribution functions and quantiles with non-ignorable missing data. Canadian Journal of Statistics, 41, 575595. doi: 10.1002/cjs.11195 [Google Scholar]
  107. Zhao, H., Zhao, P. Y., & Tang, N. S. (2013). Empirical likelihood inference for mean functionals with nonignorably missing response data. Computational Statistics and Data Analysis, 66, 101116. doi: 10.1016/j.csda.2013.03.023 [Google Scholar]
  108. Zhu, H. T., Ibrahim, J. G., & Chen, M. H. (2015). Diagnostic measures for the cox regression model with missing covariates. Biometrika, 102, 907923. doi: 10.1093/biomet/asv047 [Google Scholar]
  109. Zhu, H. T., Ibrahim, J. G., Cho, H., & Tang, N. S. (2012). Bayesian case influence measures for statistical models with missing data. Journal of Computational and Graphical Statistics, 21, 253271. doi: 10.1198/jcgs.2011.10139 [Taylor & Francis Online], [Google Scholar]
  110. Zhu, H. T., Ibrahim, J. G., & Tang, N. S. (2011). Bayesian influence analysis: A geometric approach. Biometrika, 98, 307323. doi: 10.1093/biomet/asr009 [Google Scholar]
  111. Zhu, H. T., Ibrahim, J. G., & Tang, N. S. (2014). Bayesian sensitivity analysis of statistical models with missing data. Statistica Sinica, 24, 871896[Google Scholar]
  112. Zhu, H. T., & Lee, S. Y. (2001). Local influence for incomplete-data models. Journal of the Royal Statistical Society, 63, 111126. doi: 10.1111/1467-9868.00279 [Google Scholar]
  113. Zhu, L. P., Li, L. X., Li, R. Z., & Zhu, L. X. (2011). Model-free feature screening for ultrahigh-dimensional data. Journal of the American Statistical Association, 106, 14641475. doi: 10.1198/jasa.2011.tm10563 [Taylor & Francis Online], [Google Scholar]
  114. Zou, H., & Li, R. Z. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of statistics, 36, 15091533. doi: 10.1214/009053607000000802 [Google Scholar]
  115. Zou, H., & Zhang, H. (2009). On the adaptive elastic-net with a diverging number of parameters. Annals of Statistics, 37, 17331751. doi: 10.1214/08-AOS625 [Google Scholar]