Review Articles

Rejoinder: statistical inference for non-ignorable missing-data problems: a selective review

Niansheng Tang

Key Lab of Statistical Modeling and Data Analysis of Yunnan Province, Yunnan University, Kunming, People's Republic of China

nstang@ynu.edu.cn

Pages 146-149 | Received 02 Oct. 2018, Accepted 03 Oct. 2018, Published online: 24 Oct. 2018,
  • Abstract
  • Full Article
  • References
  • Citations

References

  1. Cui, H., Li, R., & Zhong, W. (2015). Model-free feature screening for ultrahigh dimensional discriminant analysis. Journal of the American Statistical Association110, 630–641. doi: 10.1080/01621459.2014.920256 [Taylor & Francis Online], [Google Scholar]
  2. Hedeker, D., & Gibbons, R. D. (2006). Longitudinal data analysis. Hoboken, NJ: John Wiley & Sons. [Google Scholar]
  3. Kim, J. K., & Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonignorable missing data. Journal of the American Statistical Association106, 157–165. doi: 10.1198/jasa.2011.tm10104 [Taylor & Francis Online], [Google Scholar]
  4. Lazar, N. A. (2003). Bayesian empirical likelihood. Biometrika90, 319–326. doi: 10.1093/biomet/90.2.319 [Google Scholar]
  5. Liang, K. Y., & Qin, J. (2000). Regression analysis under non-standard situations: A pairwise pseudolikelihood approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology)62, 773–786. doi: 10.1111/1467-9868.00263 [Google Scholar]
  6. Shao, J., & Wang, L. (2016). Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika103, 175–187. doi: 10.1093/biomet/asv071 [Google Scholar]
  7. Tseng, C. H., Elashoff, R., Li, N., & Li, G. (2016). Longitudinal data analysis with non-ignorable missing data. Statistical Methods in Medical Research25, 205–220. doi: 10.1177/0962280212448721 [Google Scholar]
  8. Wang, L., Qi, C., & Shao, J. (2018). Model-assisted regression estimators for longitudinal data with nonignorable dropout. International Statistical Review, to appear. [Google Scholar]
  9. Zhang, Y. Q., & Tang, N. S. (2017). Bayesian empirical likelihood estimation of quantile structural equation models. Journal of Systems Science and Complexity30, 122–138. doi: 10.1007/s11424-017-6254-x [Google Scholar]
  10. Zhao, J., & Shao, J. (2016). Semiparametric pseudo-likelihoods in generalized linear models with nonignorable missing data. Journal of the American Statistical Association110, 1577–1590. doi: 10.1080/01621459.2014.983234 [Taylor & Francis Online], [Google Scholar]
  11. Zhao, J. W., & Shao, J. (2017). Approximate conditional likelihood for generalized linear models with general missing data mechanism. Journal of Systems Science and Complexity30, 139–153. doi: 10.1007/s11424-017-6188-3 [Web of Science ®], [Google Scholar]