Review Articles

Measure of rotatability of modified five-level second-order rotatable design using supplementary difference sets

Haron Mutai Ng’eno

Department of Statistics and Computer Science, Moi University, Eldoret, Kenya

haronmutaingeno@yahoo.com

Pages 40-47 | Received 17 Jan. 2018, Accepted 27 Oct. 2018, Published online: 13 Nov. 2018,
  • Abstract
  • Full Article
  • References
  • Citations

ABSTRACT

Rotatability is a desirable quality of fitting response surface experimental designs. The property states that the variance of the estimated response made from the Taylor’s series expansion are constant on circles, spheres and hyper-spheres about the centre of the design. In this article, a measure of rotatability of modified second-order rotatable design is presented. The variance function of a second-order response design and an infinite class of supplementary difference sets is used in coming up with the design.

References

  1. Box, G. E. P., & Hunter, J. S. (1957). Multifactor experimental designs for exploring response surfaces. The Annals of Mathematical Statistics28, 195–241. [Crossref], [Google Scholar]
  2. Das, M. N. (1961). Construction of rotatable designs from factorial designs. Journal of Indian Society of Agricultural Statistics13, 109–194. [Google Scholar]
  3. Das, M. N., & Narasimham, V. L. (1962). Construction of rotatable designs through balanced incomplete block designs. The Annals of Mathematical Statistics33, 1421–1439. [Crossref], [Google Scholar]
  4. Draper, N. R., & Guttman, I. (1988). An index of rotatability. Technometrics30, 105–111. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  5. Draper, N. R., & Pukelsheim, F. (1990). Another look at rotatability. Technometrics32, 195–202. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  6. Hader, R. J., & Park, S. H. (1978). Slope-rotatable central composite designs. Technometrics20, 413–417. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  7. Khuri, A. I. (1988). A measure of rotatability for response-surface designs. Technometrics30, 95–104. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  8. Koukouvinos, C., Manta, P., & Mylona, K. (2008). A general construction of E(s2)-optimal large supersaturated designs. Metrika68, 99–110. [Crossref][Web of Science ®], [Google Scholar]
  9. Koukouvinos, C., Mylona, K., Skountzou, A., & Goos, P. (2013). A general construction method for five-level second-order rotatable designs. Communications in Statistics – Simulation and Computation42, 1961–1969. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  10. Mutiso, J. M., Kerich, G. K., & Ng’eno, H. M. (2016a). Construction of five level modified second order rotatable designs using supplementary difference sets. Far East Journal of Theoretical Statistics52, 333–343. [Crossref], [Google Scholar]
  11. Mutiso, J. M., Kerich, G. K., & Ng’eno, H. M. (2016b). Construction of five level second order rotatable designs using supplementary difference sets. Advances and Applications in Statistics49, 21–30. [Crossref][Web of Science ®], [Google Scholar]
  12. Park, S. H. (1987). A class of multifactor designs for estimating the slope of response surfaces. Technometrics29, 449–453. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  13. Park, S. H., & Kim, H. J. (1992). A measure of slope-rotatability for second order response surface experimental designs. Journal of Applied Statistics19(3), 391–404. [Taylor & Francis Online], [Google Scholar]
  14. Park, S. H., Lim, J. H., & Baba, Y. (1993). A measure of rotatability for second order response surface designs. Annals of the Institute of Statistical Mathematics45, 655–664. [Crossref][Web of Science ®], [Google Scholar]
  15. Seberry, W. J. (1973). Some remarks on supplementary difference sets. Calloquia Mathematica Societalis Janos Bolyai Hungary10, 1503–1526. [Google Scholar]
  16. Victorbabu, B. R., & Narasimham, V. L. (1991). Construction of second order slope rotatable designs through balanced incomplete block designs. Communications in Statistics – Theory and Methods20, 2467–2478. [Taylor & Francis Online][Web of Science ®], [Google Scholar]