Review Articles

A discussion of ‘optimal reinsurance designs based on risk measures: a review’

Tim J. Boonen

Amsterdam School of Economics, University of Amsterdam, Amsterdam, The Netherlands

Pages 14-15 | Received 28 Apr. 2020, Accepted 02 May. 2020, Published online: 15 May. 2020,
  • Abstract
  • Full Article
  • References
  • Citations


  1. Albrecher, H., Beirlant, J., & Teugels, J. L. (2017). Reinsurance: Actuarial and statistical aspects. John Wiley & Sons. [Crossref], [Google Scholar]
  2. Asimit, A. V., & Boonen, T. J. (2018). Insurance with multiple insurers: A game-theoretic approach. European Journal of Operational Research267(2), 778–790. [Crossref][Web of Science ®], [Google Scholar]
  3. Boonen, T. J., Tan, K. S., & Zhuang, S. C. (2016a). Pricing in reinsurance bargaining with comonotonic additive utility functions. ASTIN Bulletin46(2), 507–530. [Crossref][Web of Science ®], [Google Scholar]
  4. Boonen, T. J., Tan, K. S., & Zhuang, S. C. (2016b). The role of a representative reinsurer in optimal reinsurance. Insurance: Mathematics and Economics70, 196–204. [Crossref][Web of Science ®], [Google Scholar]
  5. Cai, J., & Chi, Y. (2020). Optimal reinsurance designs based on risk measures: A review. Statistical Theory and Related Fields. Forthcoming [Taylor & Francis Online], [Google Scholar]
  6. Cai, J., & Tan, K. S. (2007). Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures. ASTIN Bulletin37(1), 93–112. [Crossref][Web of Science ®], [Google Scholar]
  7. Cheung, K. C., & Lo, A. (2017). Characterizations of optimal reinsurance treaties: A cost-benefit approach. Scandinavian Actuarial Journal2017(1), 1–28. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  8. Chi, Y. (2012). Reinsurance arrangements minimizing the risk-adjusted value of an insurer's liability. ASTIN Bulletin42(2), 529–557. [Web of Science ®], [Google Scholar]
  9. Cui, W., Yang, J., & Wu, L. (2013). Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles. Insurance: Mathematics and Economics53(1), 74–85. [Crossref][Web of Science ®], [Google Scholar]
  10. Wang, S. S., Young, V. R., & Panjer, H. H. (1997). Axiomatic characterization of insurance prices. Insurance: Mathematics and Economics21(2), 173–183. [Crossref][Web of Science ®], [Google Scholar]