Review Articles

A hybrid model of optimal reinsurance: a discussion of ‘Optimal reinsurance designs based on risk measures: a review’ by Jun Cai and Yichun Chi

Sheng Chao Zhuang

Department of Finance, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Pages 20-22 | Received 28 Apr. 2020, Accepted 02 May. 2020, Published online: 18 May. 2020,
  • Abstract
  • Full Article
  • References
  • Citations


  1. Asimit, V., & Boonen, T. J. (2018). Insurance with multiple insurers: A game-theoretic approach. European Journal of Operational Research267(2), 778–790. [Crossref][Web of Science ®], [Google Scholar]
  2. Assa, H. (2015). On optimal reinsurance policy with distortion risk measures and premiums. Insurance: Mathematics and Economics61, 70–75.[Crossref][Web of Science ®], [Google Scholar]
  3. Balbás, A., Balbás, B., & Heras, A. (2009). Optimal reinsurance with general risk measures. Insurance: Mathematics and Economics44(3), 374–384.[Crossref][Web of Science ®], [Google Scholar]
  4. Bernard, C., Liu, F., & Vanduffel, S. (2020). Optimal insurance in the presence of multiple policyholders. Journal of Economic Behavior & Organization. Advance online publication.[Crossref][Web of Science ®], [Google Scholar]
  5. Boonen, T. J., Tan, K. S., & Zhuang, S. C. (2016). The role of a representative reinsurer in optimal reinsurance. Insurance: Mathematics and Economics70, 196–204.[Crossref][Web of Science ®], [Google Scholar]
  6. Boonen, T. J., Tan, K. S., & Zhuang, S. C. (2018). Optimal reinsurance with multiple reinsurers: competitive pricing and coalition stability. Available at SSRN:[Google Scholar]
  7. Cheung, K. C., & Lo, A. (2017). Characterizations of optimal reinsurance treaties: A cost-benefit approach. Scandinavian Actuarial Journal2017(1), 1–28. doi: 10.1080/03461238.2015.1054303 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  8. Chi, Y., & Meng, H. (2014). Optimal reinsurance arrangements in the presence of two reinsurers. Scandinavian Actuarial Journal2014(5), 424–438. doi: 10.1080/03461238.2012.723638 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  9. Chi, Y., & Tan, K. S. (2013). Optimal reinsurance with general premium principles. Insurance: Mathematics and Economics52(2), 180–189.[Crossref][Web of Science ®], [Google Scholar]
  10. Chi, Y., & Zhuang, S. C. (2020). Optimal insurance with belief heterogeneity and incentive compatibility. Insurance: Mathematics and Economics92, 104–114.[Crossref][Web of Science ®], [Google Scholar]
  11. Cui, W., Yang, J., & Wu, L. (2013). Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles. Insurance: Mathematics and Economics53(1), 74–85.[Crossref][Web of Science ®], [Google Scholar]
  12. Xu, Z. Q., Zhou, X. Y., & Zhuang, S. C. (2019). Optimal insurance under rank-dependent utility and incentive compatibility. Mathematical Finance29(2), 659–692. doi: 10.1111/mafi.12185 [Crossref][Web of Science ®], [Google Scholar]
  13. Zhuang, S. C., Boonen, T. J., Tan, K. S., & Xu, Z. Q. (2017). Optimal insurance in the presence of reinsurance. Scandinavian Actuarial Journal2017(6), 535–554. doi: 10.1080/03461238.2016.1184710 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  14. Zhuang, S. C., Weng, C., Tan, K. S., & Assa, H. (2016). Marginal indemnification function formulation for optimal reinsurance. Insurance: Mathematics and Economics67, 65–76.[Crossref][Web of Science ®], [Google Scholar]