Review Articles

Discussion on ‘Review of sparse sufficient dimension reduction’

Xin Zhang

Department of Statistics, Florida State University, Tallahassee, FL, USA

Pages 146-148 | Received 18 Sep. 2020, Accepted 23 Sep. 2020, Published online: 13 Oct. 2020,
  • Abstract
  • Full Article
  • References
  • Citations


  1. Cook, R. D. (1998). Regression graphics: Ideas for studying regressions through graphics (Vol. 318). John Wiley & Sons. [Crossref], [Google Scholar]
  2. Li, K.-C., & Duan, N. (1989). Regression analysis under link violation. The Annals of Statistics17(3), 1009–1052. [Crossref][Web of Science ®], [Google Scholar]
  3. Mai, Q., & Zhang, X. (2019). An iterative penalized least squares approach to sparse canonical correlation analysis. Biometrics75(3), 734–744. doi: 10.1111/biom.13043 [Crossref][Web of Science ®], [Google Scholar]
  4. Neykov, M., Lin, Q., & Liu, J. S. (2016). Signed support recovery for single index models in high-dimensions. Annals of Mathematical Sciences and Applications1(2), 379–426. [Crossref][Web of Science ®], [Google Scholar]
  5. Neykov, M., Liu, J. S., & Cai, T. (2016). L1-regularized least squares for support recovery of high dimensional single index models with gaussian designs. The Journal of Machine Learning Research17(1), 2976–3012. [Google Scholar]
  6. Ni, L., Cook, R. D., & Tsai, C.-L. (2005). A note on shrinkage sliced inverse regression. Biometrika92(1), 242–247. [Crossref][Web of Science ®], [Google Scholar]
  7. Tan, K., Shi, L., & Yu, Z. (2020). Sparse sir: Optimal rates and adaptive estimation. The Annals of Statistics48(1), 64–85. [Crossref][Web of Science ®], [Google Scholar]
  8. Zhou, J., & He, X. (2008). Dimension reduction based on constrained canonical correlation and variable filtering. The Annals of Statistics36(4), 1649–1668. [Crossref][Web of Science ®], [Google Scholar]