Review Articles

Empirical likelihood estimation in multivariate mixture models with repeated measurements

Yuejiao Fu ,

a Department of Mathematics and Statistics, York University, Toronto, Canada

Yukun Liu ,

b School of Statistics, East China Normal University, Shanghai, China

ykliu@sfs.ecnu.edu.cn

Hsiao-Hsuan Wang ,

a Department of Mathematics and Statistics, York University, Toronto, Canada

Xiaogang Wang

a Department of Mathematics and Statistics, York University, Toronto, Canada;c Institute of Data Science, Tsinghua University, Beijing, China

Pages 152-160 | Received 12 Nov. 2018, Accepted 07 Jun. 2019, Published online: 19 Jun. 2019,
  • Abstract
  • Full Article
  • References
  • Citations

Abstract

Multivariate mixtures are encountered in situations where the data are repeated or clustered measurements in the presence of heterogeneity among the observations with unknown proportions. In such situations, the main interest may be not only in estimating the component parameters, but also in obtaining reliable estimates of the mixing proportions. In this paper, we propose an empirical likelihood approach combined with a novel dimension reduction procedure for estimating parameters of a two-component multivariate mixture model. The performance of the new method is compared to fully parametric as well as almost nonparametric methods used in the literature.

References

  1. Cruz-Medina, I. R., Hettmansperger, T. P., & Thomas, H. (2004). Semiparametric mixture models and repeated measures: The multinomial cut point model. Journal of the Royal Statistical Society: Series C (Applied Statistics)53, 463–474. doi: 10.1111/j.1467-9876.2004.05203.x [Crossref][Web of Science ®], [Google Scholar]
  2. Hall, P., & Zhou, X. H. (2003). Nonparametric estimation of component distributions in a multivariate mixture. The Annals of Statistics31, 201–224. doi: 10.1214/aos/1046294462 [Crossref][Web of Science ®], [Google Scholar]
  3. Hettmansperger, T. P., & Thomas, H. (2000). Almost nonparametric inference for repeated measures in mixture models. Journal of the Royal Statistical Society. Series B62, 811–825. doi: 10.1111/1467-9868.00266 [Crossref], [Google Scholar]
  4. Kasahara, H., & Shimotsu, K. (2014). Nonparametric identification and estimation of the number of components in multivariate mixtures. Journal of the Royal Statistical Society. Series B76(1), 97–111. doi: 10.1111/rssb.12022 [Crossref], [Google Scholar]
  5. Lindsay, B. G. (1995). Mixture models: Theory, geometry and applications. Hayward: Institute for Mathematical Statistics. [Crossref], [Google Scholar]
  6. McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley. [Crossref], [Google Scholar]
  7. Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika75, 237–249. doi: 10.1093/biomet/75.2.237 [Crossref][Web of Science ®], [Google Scholar]
  8. Owen, A. B. (2001). Empirical likelihood. New York: Chapman & Hall/CRC. [Crossref], [Google Scholar]
  9. Qin, J., & Lawless, J. (1994). Empirical likelihood and general estimating equations. The Annals of Statistics22, 300–325. doi: 10.1214/aos/1176325370 [Crossref][Web of Science ®], [Google Scholar]
  10. Thomas, H., & Horton, J. J. (1997). Competency criteria and the class inclusion task: Modeling judgments and justifications. Developmental Psychology33, 1060–1073. doi: 10.1037/0012-1649.33.6.1060 [Crossref][Web of Science ®], [Google Scholar]
  11. Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985). Statistical analysis of finite mixture distributions. New York: Wiley. [Google Scholar]