Review Articles

Discussion of ‘On studying extreme values and systematic risks with nonlinear time series models and tail dependence measures’

Ting Zhang

Boston University, Boston, MA, USA

Pages 35-36 | Received 08 Dec. 2020, Accepted 08 Dec. 2020, Published online: 12 Jan. 2021,
  • Abstract
  • Full Article
  • References
  • Citations


  1. Chernozhukov, V. (2005). Extremal quantile regression. The Annals of Statistics33(2), 806–839. [Crossref][Web of Science ®], [Google Scholar]
  2. Davis, R. A., Drees, H., Segers, J., & Warchoł, M. (2018). Inference on the tail process with application to financial time series modeling. Journal of Econometrics205(2), 508–525. [Crossref][Web of Science ®], [Google Scholar]
  3. Davis, R. A., & Mikosch, T. (2009). The extremogram: A correlogram for extreme events. Bernoulli15(4), 977–1009. [Crossref][Web of Science ®], [Google Scholar]
  4. Davis, R. A., & Resnick, S. I. (1989). Basic properties and prediction of max-arma processes. Advances in Applied Probability21(4), 781–803. [Crossref][Web of Science ®], [Google Scholar]
  5. Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance. Bernoulli9(4), 617–657. [Crossref][Web of Science ®], [Google Scholar]
  6. Drees, H., & Rootzén, H. (2010). Limit theorems for empirical processes of cluster functionals. The Annals of Statistics38(4), 2145–2186. [Crossref][Web of Science ®], [Google Scholar]
  7. Elsner, J. B., Kossin, J. P., & Jagger, T. H. (2008). The increasing intensity of the strongest tropical cyclones. Nature455(7209), 92–95. [Crossref][Web of Science ®], [Google Scholar]
  8. Hall, P., Peng, L., & Yao, Q. (2002). Moving-maximum models for extrema of time series. Journal of Statistical Planning and Inference103(1–2), 51–63. [Crossref][Web of Science ®], [Google Scholar]
  9. Hoga, Y. (2018). A structural break test for extremal dependence in β-mixing random vectors. Biometrika105(3), 627–643. [Crossref][Web of Science ®], [Google Scholar]
  10. Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proceedings of the National Academy of Sciences of the United States of America42(1), 43–47. [Crossref][Web of Science ®], [Google Scholar]
  11. Sibuya, M. (1960). Bivariate extreme statistics, I. Annals of the Institute of Statistical Mathematics11(3), 195–210. [Crossref][Web of Science ®], [Google Scholar]
  12. Smith, R. L., & Weissman, I. (1996). Characterization and estimation of the multivariate extremal index. Technical report, University of North Carolina–Chapel Hill. [Google Scholar]
  13. Tang, R., Shao, J., & Zhang, Z. (2013). Sparse moving maxima models for tail dependence in multivariate financial time series. Journal of Statistical Planning and Inference143(5), 882–895. [Crossref][Web of Science ®], [Google Scholar]
  14. Tsai, I.-C. (2012). The relationship between stock price index and exchange rate in Asian markets: A quantile regression approach. Journal of International Financial Markets, Institutions and Money22(3), 609–621. [Crossref][Web of Science ®], [Google Scholar]
  15. Zhang, T. (2020). High-quantile regression for tail-dependent time series. Biometrika, forthcoming. [Crossref], [Google Scholar]
  16. Zhang, Z. (2005). A new class of tail-dependent time series models and its applications in financial time series. Advances in Econometrics20, 323–358. [Google Scholar]
  17. Zhang, Z. (2008a). The estimation of m4 processes with geometric moving patterns. Annals of the Institute of Statistical Mathematics60(1), 121–150. [Crossref][Web of Science ®], [Google Scholar]
  18. Zhang, Z. (2008b). Quotient correlation: A sample based alternative to Pearson's correlation. The Annals of Statistics36(2), 1007–1030. [Crossref][Web of Science ®], [Google Scholar]
  19. Zhang, Z., Zhang, C., & Cui, Q. (2017). Random threshold driven tail dependence measures with application to precipitation data analysis. Statistica Sinica27, 685–709. [Web of Science ®], [Google Scholar]