Review Articles

Nonlinear prediction via Hermite transformation

Tucker McElroy ,

a U.S. Census Bureau, Washington, DC, USA

tucker.s.mcelroy@census.gov

Srinjoy Das

b University of California San Diego, La Jolla, CA, USA

Pages 49-54 | Received 25 Oct. 2019, Accepted 24 Nov. 2020, Published online: 17 Dec. 2020,
  • Abstract
  • Full Article
  • References
  • Citations

ABSTRACT

General prediction formulas involving Hermite polynomials are developed for time series expressed as a transformation of a Gaussian process. The prediction gains over linear predictors are examined numerically, demonstrating the improvement of nonlinear prediction.

Your browser may not support PDF viewing. Please click to download the file.

References

  1. Brockett, P. L., Hinich, M. J., & Patterson, D. (1988). Bispectral-based tests for the detection of Gaussianity and linearity in time series.Journal of the American Statistical Association83(403), 657–664. https://doi.org/10.1080/01621459.1988.10478645 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  2. Brockwell, P. J., & Davis, R. A. (2013). Time series: Theory and methods. Springer Science & Business Media. [Google Scholar]
  3. Janicki, R., & McElroy, T. (2016). Hermite expansion and estimation of monotonic transformations of Gaussian data. Journal of Nonparametric Statistics28(1), 207–234. https://doi.org/10.1080/10485252.2016.1139880 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  4. Maravall, A. (1983). An application of nonlinear time series forecasting. Journal of Business & Economic Statistics1(1), 66–74. https://doi.org/10.1080/07350015.1983.10509325 [Taylor & Francis Online], [Google Scholar]
  5. McElroy, T. (2010). A nonlinear algorithm for seasonal adjustment in multiplicative component decompositions. Studies in Nonlinear Dynamics and Econometrics14(4). Article 6. https://doi.org/10.2202/1558-3708.1756 [Web of Science ®], [Google Scholar]
  6. McElroy, T. (2016). On the measurement and treatment of extremes in time series. Extremes19(3), 467–490. https://doi.org/10.1007/s10687-016-0254-4 [Crossref][Web of Science ®], [Google Scholar]
  7. McElroy, T., & McCracken, M. (2017). Multi-step ahead forecasting of vector time series. Econometric Reviews36(5), 495–513. https://doi.org/10.1080/07474938.2014.977088 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  8. McElroy, T., & Politis, D. (2020). Time series: A first course with bootstrap starter. Chapman Hall. [Google Scholar]
  9. Roman, S. (1984). The umbral calculus. Academic Press. [Google Scholar]
  10. Taniguchi, M., & Kakizawa, Y. (2000). Asymptotic theory of statistical inference for time series. Springer. [Crossref], [Google Scholar]
  11. Varma, R. S. (1951). On Appell polynomials. Proceedings of the American Mathematical Society2(4), 593–596. https://doi.org/10.1090/S0002-9939-1951-0042547-5 [Crossref][Web of Science ®], [Google Scholar]