Review Articles

D-optimal population designs in linear mixed effects models for multiple longitudinal data

Hongyan Jiang ,

a Department of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, People's Republic of China

Rongxian Yue

b Department of Mathematics, Shanghai Normal University, Shanghai People's Republic of China

yue2@shnu.edu.cn

Pages 88-94 | Received 25 Jun. 2020, Accepted 29 Jan. 2021, Published online: 12 Feb. 2021,
  • Abstract
  • Full Article
  • References
  • Citations

Abstract

The main purpose of this paper is to investigate D-optimal population designs in multi-response linear mixed models for longitudinal data. Observations of each response variable within subjects are assumed to have a first-order autoregressive structure, possibly with observation error. The equivalence theorems are provided to characterise the D-optimal population designs for the estimation of fixed effects in the model. The semi-Bayesian D-optimal design which is robust against the serial correlation coefficient is also considered. Simulation studies show that the correlation between multi-response variables has tiny effects on the optimal design, while the experimental costs are important factors in the optimal designs.

Your browser may not support PDF viewing. Please click to download the file.

References

  1. Atkinson, A. C., Donev, A. N., & Tobias, R. D. (2007). Optimum experimental designs, with SAS. Oxford University Press. [Google Scholar]
  2. Azurduy, S. A. O. (2009). Robust designs for longitudinal studies. University of Maastricht. [Google Scholar]
  3. Berger, M. P. F., Ouwens, M. J. N. M., & Tan, F. E. S. (2003). Robust designs for longitudinal mixed effects models. In H. Yanai, A. Okada, K. Shigemasu, Y. Kano, & J. J. Meulman (Eds.), New developments in psychometrics. Springer. [Crossref], [Google Scholar]
  4. Castañeda, L. M. E., & López-Rios, V. I. (2016). Optimal population designs for discrimination between two nested nonlinear mixed effects models. Revista Ciencia En Desarrollo7(1), 71–81. https://doi.org/10.19053/01217488.4233 [Crossref], [Google Scholar]
  5. Chi, E. M., & Reinsel, G. C. (1989). Models for longitudinal data with random effects and AR(1) errors. Journal of the American Statistical Association84(406), 452–459. https://doi.org/10.1080/01621459.1989.10478790 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  6. Diggle, P. J. (1988). An approach to the analysis of repeated measurements. Biometrics44(4), 959–971. https://doi.org/10.2307/2531727 [Crossref][Web of Science ®], [Google Scholar]
  7. Fedorov, V. V., Gagnon, R. C., & Leonov, S. L. (2002). Design of experiments with unknown parameters in variance. Applied Stochastic Models in Business and Industry18(3), 207–218. https://doi.org/10.1002/(ISSN)1526-4025 [Crossref][Web of Science ®], [Google Scholar]
  8. Gagnon, R., & Leonov, S. (2005). Optimal population designs for PK models with serial sampling. Journal of Biopharmaceutical Statistics15(1), 143–163. https://doi.org/10.1081/BIP-200040853 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  9. Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika78(1), 13–22. https://doi.org/10.1093/biomet/73.1.13 [Crossref], [Google Scholar]
  10. Liu, X., Yue, R. X., & Wong, W. K. (2019). D-optimal designs for multi-response linear mixed models. Metrika82, 87–98. https://doi.org/10.1007/s00184-018-0679-7 [Crossref][Web of Science ®], [Google Scholar]
  11. Molenberghs, G., & Verbeke, G. (2005). Models for discrete longitudinal data. Springer Science+Business Media, Inc. [Google Scholar]
  12. Nyberg, J., Höglund, R., Bergstrand, M., Karlsson, M. O., & Hooker, A. C. (2012). Serial correlation in optimal design for nonlinear mixed effects models. Journal of Pharmacokinetics and Pharmacodynamics39(3), 239–249. https://doi.org/10.1007/s10928-012-9245-5 [Crossref][Web of Science ®], [Google Scholar]
  13. Ogungbenro, K., Gueorguieva, I., Majid, O., Graham, G., & Aarons, L. (2007). Optimal design for multiresponse pharmacokinetic-pharmacodynamic models – dealing with unbalanced designs. Journal of Pharmacokinetics and Pharmacodynamic34(3), 313–331. https://doi.org/10.1007/s10928-006-9048-7 [Crossref][Web of Science ®], [Google Scholar]
  14. Roy, A. (2006). Estimating correlation coefficient between two variables with repeated observations using mixed effects model. Biometrical Journal48(2), 286–301. https://doi.org/10.1002/(ISSN)1521-4036 [Crossref][Web of Science ®], [Google Scholar]
  15. Schmelter, T. (2007a). The optimality of single-group designs for certain mixed models. Metrika65, 183–193. https://doi.org/10.1007/s00184-006-0068-5 [Crossref][Web of Science ®], [Google Scholar]
  16. Schmelter, T. (2007b). Considerations on group-wise identical designs for linear mixed models. Journal of Statistical Planning and Inference137(12), 4003–4010. https://doi.org/10.1016/j.jspi.2007.04.017 [Crossref][Web of Science ®], [Google Scholar]
  17. Tan, F. E. S., & Berger, M. P. F. (1999). Optimal allocation of time points for the random effects model. Communications in Statistics-Simulation and Computation28(2), 517–540. https://doi.org/10.1080/03610919908813563 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  18. Tekle, F. B., Tan, F. E. S., & Berger, M. P. F. (2008). D-optimal cohort designs for linear mixed-effects model. Statistics in Medicine27(14), 2586–2600. https://doi.org/10.1002/sim.v27:14 [Crossref][Web of Science ®], [Google Scholar]
  19. Verbeke, G., Fieuws, S., Molenberghs, G., & Davidian, M. (2014). The analysis of multivariate longitudinal data: A review. Statistical Methods in Medical Research23(1), 42–59. https://doi.org/10.1177/0962280212445834 [Crossref][Web of Science ®], [Google Scholar]
  20. Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data, Springer Series in Statistics. Springer. [Google Scholar]
  21. Wang, W. L., & Fan, T. H. (2010). ECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errors. Computational Statistics and Data Analysis54(5), 1328–1341. https://doi.org/10.1016/j.csda.2009.11.021 [Crossref][Web of Science ®], [Google Scholar]