References
- Altamore, D., Consonni, G., & La Rocca, L. (2013). Objective Bayesian search of gaussian directed acyclic graphical models for ordered variables with non-local priors. Biometrics, 69(2), 478–487. https://doi.org/10.1111/biom.v69.2 [Crossref], [Web of Science ®], [Google Scholar]
- Banerjee, S., & Ghosal, S. (2014). Posterior convergence rates for estimating large precision matrices using graphical models. Electronic Journal of Statistics, 8(2), 2111–2137. https://doi.org/10.1214/14-EJS945 [Crossref], [Google Scholar]
- Banerjee, S., & Ghosal, S. (2015). Bayesian structure learning in graphical models. Journal of Multivariate Analysis, 136, 147–162. https://doi.org/10.1016/j.jmva.2015.01.015 [Crossref], [Web of Science ®], [Google Scholar]
- Ben-David, E., Li, T., Massam, H., & Rajaratnam, B. (2016). High dimensional Bayesian inference for Gaussian directed acyclic graph models (Tech. Rep.). http://arxiv.org/abs/1109.4371 [Crossref], [Google Scholar]
- Bhadra, A., & Mallick, B. (2013). Joint high-dimensional Bayesian variable and covariance selection with an application to eQTL analysis. Biometrics, 69(2), 447–457. https://doi.org/10.1111/biom.v69.2 [Crossref], [Web of Science ®], [Google Scholar]
- Bickel, P. J., & Levina, E. (2008). Regularized estimation of large covariance matrices. Annals of Statistics, 36(1), 199–227. https://doi.org/10.1214/009053607000000758 [Crossref], [Web of Science ®], [Google Scholar]
- Cai, T., Liu, W., & Luo, X. (2011). A constrained ℓ1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106(494), 594–607. https://doi.org/10.1198/jasa.2011.tm10155 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Cao, X., Khare, K., & Ghosh, M. (2019). Posterior graph selection and estimation consistency for high-dimensional Bayesian DAG models. Annals of Statistics, 47(1), 319–348. https://doi.org/10.1214/18-AOS1689 [Crossref], [Web of Science ®], [Google Scholar]
- Cao, X., Khare, K., & Ghosh, M. (2020). High-dimensional posterior consistency for hierarchical non-local priors in regression. Bayesian Analysis, 15(1), 241–262. https://doi.org/10.1214/19-BA1154 [Crossref], [Web of Science ®], [Google Scholar]
- Carvalho, C. M., & Scott, J. G. (2009). Objective Bayesian model selection in Gaussian graphical models. Biometrika, 96(3), 497–512. https://doi.org/10.1093/biomet/asp017 [Crossref], [Web of Science ®], [Google Scholar]
- El Karoui, N. (2008). Spectrum estimation for large dimensional covariance matrices using random matrix theory. Annals of Statistics, 36(6), 2757–2790. https://doi.org/10.1214/07-AOS581 [Crossref], [Web of Science ®], [Google Scholar]
- Huang, J., Liu, N., Pourahmadi, M., & Liu, L. (2006). Covariance selection and estimation via penalised normal likelihood. Biometrika, 93(1), 85–98. https://doi.org/10.1093/biomet/93.1.85 [Crossref], [Web of Science ®], [Google Scholar]
- Johnson, V., & Rossell, D. (2010). On the use of non-local prior densities in Bayesian hvoothesis tests hypothesis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(2), 143–170. https://doi.org/10.1111/rssb.2010.72.issue-2 [Crossref], [Google Scholar]
- Johnson, V., & Rossell, D. (2012). Bayesian model selection in high-dimensional settings. Journal of the American Statistical Association, 107(498), 649–660. https://doi.org/10.1080/01621459.2012.682536 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Khare, K., Oh, S., Rahman, S., & Rajaratnam, B. (2017). A convex framework for high-dimensional sparse Cholesky based covariance estimation in Gaussian DAG models [Preprint, Department of Statisics, University of Florida]. [Google Scholar]
- Lee, K., Lee, J., & Lin, L. (2019). Minimax posterior convergence rates and model selection consistency in high-dimensional DAG models based on sparse Cholesky factors. Annals of Statistics, 47(6), 3413–3437. https://doi.org/10.1214/18-AOS1783 [Crossref], [Web of Science ®], [Google Scholar]
- Liang, F., Paulo, R., Molina, G., Clyde, A. M., & Berger, O. J. (2008). Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association, 103(481), 410–423. https://doi.org/10.1198/016214507000001337 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Narisetty, N., & He, X. (2014). Bayesian variable selection with shrinking and diffusing priors. Annals of Statistics, 42(2), 789–817. https://doi.org/10.1214/14-AOS1207 [Crossref], [Web of Science ®], [Google Scholar]
- Niu, Y., Pati, D., & Mallick, B. (2019). Bayesian graph selection consistency under model misspecification. arxiv:1901.04134 [Google Scholar]
- Pourahmadi, M. (2007). Cholesky decompositions and estimation of a covariance matrix: Orthogonality of variance–correlation parameters. Biometrika, 94(4), 1006–1013. https://doi.org/10.1093/biomet/asm073 [Crossref], [Web of Science ®], [Google Scholar]
- Rossell, D., Telesca, D., & Johnson, V. E. (2013). High-dimensional Bayesian classifiers using non-local priors. In Statistical models for data analysis. Springer. [Crossref], [Google Scholar]
- Scott, J. G., & Carvalho, C. M. (2008). Feature-inclusion stochastic search for gaussian graphical models. Journal of Computational and Graphical Statistics, 17(4), 790–808. https://doi.org/10.1198/106186008X382683 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Shin, M., Bhattacharya, A., & Johnson, V. (2018). Scalable Bayesian variable selection using nonlocal prior densities in ultrahigh-dimensional settings. Statistica Sinica, 28(2), 1053–1078. https://doi.org/10.5705/ss.202016.0167 [Web of Science ®], [Google Scholar]
- Shojaie, A., & Michailidis, G. (2010). Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. Biometrika, 97(3), 519–538. https://doi.org/10.1093/biomet/asq038 [Crossref], [Web of Science ®], [Google Scholar]
- Tan, L. S. L., Jasra, A., De Iorio, M., & Ebbels, T. M. D. (2017). Bayesian inference for multiple gaussian graphical models with application to metabolic association networks. The Annals of Applied Statistics, 11(4), 2222–2251. https://doi.org/10.1214/17-AOAS1076 [Crossref], [Web of Science ®], [Google Scholar]
- van de Geer, S., & Bühlmann, P. (2013). -penalized maximum likelihood for sparse directed acyclic graphs. The Annals of Statistics, 41(2), 536–567. https://doi.org/10.1214/13-AOS1085 [Crossref], [Web of Science ®], [Google Scholar]
- Wu, H.-H. (2016). Nonlocal priors for Bayesian variable selection in generalized linear models and generalized linear mixed models and their applications in biology data [PhD thesis, University of Missouri]. [Crossref], [Google Scholar]
- Xiang, R., Khare, K., & Ghosh, M. (2015). High dimensional posterior convergence rates for decomposable graphical models. Electronic Journal of Statistics, 9(2), 2828–2854. https://doi.org/10.1214/15-EJS1084 [Crossref], [Web of Science ®], [Google Scholar]
- Yang, Y., Wainwright, M. J., & Jordan, M. I. (2016). On the computational complexity of high-dimensional Bayesian variable selection. Annals of Statistics, 44(6), 2497–2532. https://doi.org/10.1214/15-AOS1417 [Crossref], [Web of Science ®], [Google Scholar]
- Yu, G., & Bien, J. (2017). Learning local dependence in ordered data. Journal of Machine Learning Research, 18(42), 1–60. [Google Scholar]
- Zhang, T., & Zou, H. (2014). Sparse precision matrix estimation via lasso penalized D-trace loss. Biometrika, 101(1), 103–120. https://doi.org/10.1093/biomet/ast059 [Crossref], [Web of Science ®], [Google Scholar]