References
- Cassel, C. M., Sarndal, C. E., & Wretman, J. H. (1976). Some results on generalized difference estimation and generalized regression estimation for finite populations. Biometrika, 63, 615–620. https://doi.org/10.1093/biomet/63.3.615 [Crossref], [Web of Science ®], [Google Scholar]
- Chen, S. X., Leung, D. H., & Qin, J. (2008). Improving semiparametric estimation by using surrogate data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70, 803–823. https://doi.org/10.1111/rssb.2008.70.issue-4 [Crossref], [Web of Science ®], [Google Scholar]
- Greenlees, J. S., Reece, W. S., & Zieschang, K. D. (1982). Imputation of missing values when the probability of response depends on the variable being imputed. Journal of the American Statistical Association, 77, 251–261. https://doi.org/10.1080/01621459.1982.10477793 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Hall, A. R. (2005). Generalized method of moments. Oxford University Press. [Google Scholar]
- Hansen, L. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50, 1029–1054. https://doi.org/10.2307/1912775 [Crossref], [Web of Science ®], [Google Scholar]
- Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data ( 2nd ed.). Wiley. [Crossref], [Google Scholar]
- Robins, J. M., & Rotiv, Y. (1997). Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semiparametric models. Statistics in Medicine, 16, 285–319. https://doi.org/10.1002/(ISSN)1097-0258 [Crossref], [Web of Science ®], [Google Scholar]
- Rotnitzky, A., & Robins, J. M. (1997). Analysis of semiparametric regression models with nonignorable nonresponse. Statistics in Medicine, 16, 81–102. https://doi.org/10.1002/(ISSN)1097-0258 [Crossref], [Web of Science ®], [Google Scholar]
- Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592. https://doi.org/10.1093/biomet/63.3.581 [Crossref], [Web of Science ®], [Google Scholar]
- Sarndal, C. E., Swensson, B., & Wretman, J. (2003). Model assisted survey sampling. Springer-Verlag. [Google Scholar]
- Shao, J., & Wang, L. (2016). Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika, 103, 175–187. https://doi.org/10.1093/biomet/asv071 [Crossref], [Web of Science ®], [Google Scholar]
- Shao, J., & Wang, S. (2014). Efficiency of model-assisted regression estimators in sample surveys. Statistica Sinica, 24, 395–414. [Web of Science ®], [Google Scholar]
- Shao, J., & Zhang, J. (2015). A transformation approach in linear mixed-effect models with informative missing responses. Biometrika, 102, 107–119. https://doi.org/10.1093/biomet/asu069 [Crossref], [Web of Science ®], [Google Scholar]
- Tang, G., Little, R. J. A., & Raghunathan, T. E. (2003). Analysis of multivariate missing data with nonignorable nonresponse. Biometrika, 90, 747–764. https://doi.org/10.1093/biomet/90.4.747 [Crossref], [Web of Science ®], [Google Scholar]
- Wang, S., Shao, J., & Kim, J. K. (2014). An instrumental variable approach for identification and estimation with nonignorable nonresponse. Statistica Sinica, 24, 1097–1116. [Web of Science ®], [Google Scholar]
- Wu, M. C., & Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44, 175–188. https://doi.org/10.2307/2531905 [Crossref], [Web of Science ®], [Google Scholar]
- Xu, L., & Shao, J. (2009). Estimation in longitudinal or panel data models with random-effect-based missing responses. Biometrics, 65, 1175–1183. https://doi.org/10.1111/j.1541-0420.2009.01195.x [Crossref], [Web of Science ®], [Google Scholar]
- Zhao, J., & Shao, J. (2015). Semiparametric pseudo likelihoods in generalized linear models with nonignorable missing data. Journal of the American Statistical Association, 110, 1577–1590. https://doi.org/10.1080/01621459.2014.983234 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]