References
- Barky, R. B., & Miron, J. A. (1989). The seasonal cycle and the business cycle. The Journal of Political Economy, 97(3), 503–534. https://doi.org/10.1086/261614 [Crossref], [Web of Science ®], [Google Scholar]
- Berger, J. O., & Bernardo, J. M. (1992). On the development of reference priors. In J. M. Bernardo et al. (Eds.), Bayesian analysis IV . Oxford University Press. [Google Scholar]
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of Royal Statistical Society Ser. B, 41, 113–147. [Google Scholar]
- Bernardo, J. M., & Juárez, M. A. (2003). Intrinsic estimation. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith & M. West (Eds.), Bayesian statistics (Vol. 7, pp. 465–476). Oxford University Press. [Google Scholar]
- Cecchetti, S. G., Kashyap, A. K., & Wilcox, D. W. (1997). Interactions between the seasonal and business cycles in production and inventories. American Economic Review, 87, 884–892. [Web of Science ®], [Google Scholar]
- Chang, E. C., & Pinegar, M. J. (1989). Seasonal fluctuations in industrial production and stock market seasonals. The Journal of Financial and Quantitative Analysis, 24(1), 59–74. https://doi.org/10.2307/2330748 [Crossref], [Web of Science ®], [Google Scholar]
- Fernandez-Villaverde, J., & Rubio-Ramirez, J. F. (2004). Comparing dynamic equilibrium economies to data. Journal of Econometrics, 123(1), 153–187. https://doi.org/10.1016/j.jeconom.2003.10.031 [Crossref], [Web of Science ®], [Google Scholar]
- Gelfand, A. E., & Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398–409. https://doi.org/10.1080/01621459.1990.10476213 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Ghysels, E. (1988). A study toward a dynamic theory of seasonality for economic time series. Journal of the American Statistical Association, 83(401), 168–172. https://doi.org/10.1080/01621459.1988.10478583 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Harville, D. A. (1998). Matrix algebra from a statistician's perspective. Taylor & Francis Group. [Google Scholar]
- Kitamura, Y., & Stutzer, M. (1997). An information-theoretic alternative to generalized method of moments estimation. Econometrica, 65(4), 861–874. https://doi.org/10.2307/2171942 [Crossref], [Web of Science ®], [Google Scholar]
- MacKinnon, J. G., & Smith, A. A. (1998). Approximate bias correction in econometrics. Journal of Econometrics, 85(2), 205–230. https://doi.org/10.1016/S0304-4076(97)00099-7 [Crossref], [Web of Science ®], [Google Scholar]
- Miron, J. A., & Beaulieu, J. J. (1996). What have macroeconomists learned about business cycles from the study of seasonal cycles?. The Review of Economics and Statistics, 78(1), 54–66. https://doi.org/10.2307/2109847 [Crossref], [Web of Science ®], [Google Scholar]
- Ni, S., & Sun, D. (2003). Noninformative priors and frequentist risks of Bayesian estimators of vector-autoregressive models. Journal of Econometrics, 115(1), 159–197. https://doi.org/10.1016/S0304-4076(03)00099-X [Crossref], [Web of Science ®], [Google Scholar]
- Ni, S., Sun, D., & Sun, X. (2007). Intrinsic Bayesian estimation of vector autoregression impulse responses. Journal of Business and Economic Statistics, 25(2), 163–176.https://doi.org/10.1198/073500106000000378 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Reinganum, M. R. (1983). The anomalous stock market behavior of small firms in January: Empirical tests for tax-loss selling effects. Journal of Financial Economics, 12(1), 89–104.https://doi.org/10.1016/0304-405X(83)90029-6 [Crossref], [Web of Science ®], [Google Scholar]
- Robert, C. P. (1994). The Bayesian choice. Springer-Verlag. [Crossref], [Google Scholar]
- Robert, C. P. (1996). Intrinsic losses. Theory and Decision, 40(2), 191–214. https://doi.org/10.1007/BF00133173 [Crossref], [Web of Science ®], [Google Scholar]
- Robertson, J. C., Tallman, E. W., & Whiteman, C. H. (2005). Forecasting using relative entropy. Journal of Money, Credit, and Banking, 37(3), 383–401. https://doi.org/10.1353/mcb.2005.0034 [Crossref], [Web of Science ®], [Google Scholar]
- Rozeff, M. S., & Kinney, W. R. (1976). Capital market seasonality: The case of stock returns. Journal of Financial Economics, 3(4), 379–402. https://doi.org/10.1016/0304-405X(76)90028-3 [Crossref], [Web of Science ®], [Google Scholar]
- Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 1–48. https://doi.org/10.2307/1912017 [Crossref], [Web of Science ®], [Google Scholar]
- Solo, V., Purdon, P., Weisskoff, R., & Brown, E. (2001). A signal estimation approach to functional MRI. IEEE Transactions on Medical Imaging, 20(1), 26–35. https://doi.org/10.1109/42.906422 [Crossref], [Web of Science ®], [Google Scholar]
- Sun, D., & Berger, J. O. (1998). Reference priors under partial information. Biometrika, 85, 55–71. https://doi.org/10.1093/biomet/85.1.55 [Crossref], [Web of Science ®], [Google Scholar]
- Sun, D., & Ni, S. (2004). Bayesian analysis of VAR models with noninformative priors. Journal of Statistical Planning and Inference, 121(2), 291–309. https://doi.org/10.1016/S0378-3758(03)00116-2 [Crossref], [Web of Science ®], [Google Scholar]
- Tanner, M., & Wang, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of American Statistical Association, 82(398), 528–540. https://doi.org/10.1080/01621459.1987.10478458 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Yang, R., & Berger, J. O. (1994). Estimation of a covariance matrix using the reference prior. The Annals of Statistics, 22(3), 1195–1211. https://doi.org/10.1214/aos/1176325625 [Crossref], [Web of Science ®], [Google Scholar]
- Zellner, A. (1971). An introduction to Bayesian inference in econometrics. John Wiley & Sons. [Google Scholar]
- Zellner, A. (1978). Estimation of functions of population means and regression coefficients including structural coefficients: A minimum expected loss approach. Journal of Econometrics, 8(2), 127–158. https://doi.org/10.1016/0304-4076(78)90024-6 [Crossref], [Google Scholar]
- Zellner, A. (1998). The finite sample properties of simultaneous equations estimates and estimators: Bayesian and non-Bayesian approaches. Journal of Econometrics, 83(1–2), 185–212. https://doi.org/10.1016/S0304-4076(97)00069-9 [Crossref], [Web of Science ®], [Google Scholar]