Review Articles

Generalized fiducial methods for testing quantitative trait locus effects in genetic backcross studies

Pengcheng Ren ,

KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, People's Republic of China

Guanfu Liu ,

School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai, People's Republic of China

Xiaolong Pu ,

KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, People's Republic of China

Yan Li

KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, People's Republic of China

Pages 148-160 | Received 25 Feb. 2020, Accepted 29 Aug. 2021, Published online: 28 Dec. 2021,
  • Abstract
  • Full Article
  • References
  • Citations

In this paper, we propose generalized fiducial methods and construct four generalized p-values to test the existence of quantitative trait locus effects under phenotype distributions from a location-scale family. Compared with the likelihood ratio test based on simulation studies, our methods perform better at controlling type I errors while retaining comparable power in cases with small or moderate sample sizes. The four generalized fiducial methods support varied scenarios: two of them are more aggressive and powerful, whereas the other two appear more conservative and robust. A real data example involving mouse blood pressure is used to illustrate our proposed methods.


  • Agresti, A., & Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician, 54(4), 280288.
  • Agresti, A., & Coull, B. A. (1998). Approximate is better than ‘exact’ for interval estimation of binomial proportions. The American Statistician, 52(2), 119126.
  • Bebu, I., Luta, G., Mathew, T., & Agan, B. K. (2016). Generalized confidence intervals and fiducial intervals for some epidemiological measures. International Journal of Environmental Research and Public Health, 13(6), 605.
  • Cai, T. T. (2005). One-sided confidence intervals in discrete distributions. Journal of Statistical Planning and Inference, 131(1), 6388.
  • Chen, Z., & Chen, H. (2005). On some statistical aspects of the interval mapping for QTL detection. Statistica Sinica, 15(4), 909925.
  • Cui, Y., & Hannig, J. (2019). Nonparametric generalized fiducial inference for survival functions under censoring. Biometrika, 106(3), 501518.
  • Efron, B. (1998). RA Fisher in the 21st century. Statistical Science, 13(2), 95122.
  • Fisher, R. A. (1930). Inverse probability. In B. J. Green (Ed.), Mathematical proceedings of the Cambridge philosophical society (Vol. 26, pp. 528–535). Cambridge University Press.
  • Fisher, R. A. (1932). Statistical methods for research workers (4th ed.). Oliver & Boyd.
  • Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. Springer.
  • Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Chapman and Hall/CRC.
  • Hannig, J. (2009). On generalized fiducial inference. Statistica Sinica, 19(2), 491544.
  • Hannig, J., Iyer, H., Lai, R. C., & Lee, T. C. (2016). Generalized fiducial inference: A review and new results. Journal of the American Statistical Association, 111(515), 13461361.
  • Hannig, J., Iyer, H., & Patterson, P. (2006). Fiducial generalized confidence intervals. Journal of the American Statistical Association, 101(473), 254269.
  • Huang, N., Parco, A., Mew, T., Magpantay, G., McCouch, S., Guiderdoni, E., Xu, J., Subudhi, P., Angeles, E. R., & Khush, G. S. (1997). RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Molecular Breeding, 3(2), 105113.
  • Korol, A., Ronin, Y., Tadmor, Y., Bar-Zur, A., Kirzhner, V., & Nevo, E. (1996). Estimating variance effect of QTL: An important prospect to increase the resolution power of interval mapping. Genetical Research, 67(2), 187194.
  • Krishnamoorthy, K., & Lee, M. (2010). Inference for functions of parameters in discrete distributions based on fiducial approach: Binomial and Poisson cases. Journal of Statistical Planning and Inference, 140(5), 11821192.
  • Lai, R. C., Hannig, J., & Lee, T. C. (2015). Generalized fiducial inference for ultrahigh-dimensional regression. Journal of the American Statistical Association, 110(510), 760772.
  • Lander, E. S., & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121(1), 185199.
  • Li, X., Su, H., & Liang, H. (2018). Fiducial generalized p-values for testing zero-variance components in linear mixed-effects models. Science China Mathematics, 61(7), 13031318.
  • Li, X., Xu, X., & Li, G. (2007). A fiducial argument for generalized p-value. Science in China Series A: Mathematics, 50(7), 957966.
  • Li, X., Zhou, X., & Tian, L. (2013). Interval estimation for the mean of lognormal data with excess zeros. Statistics & Probability Letters, 83(11), 24472453.
  • Liu, G., Li, P., Liu, Y., & Pu, X. (2020). Hypothesis testing for quantitative trait locus effects in both location and scale in genetic backcross studies. Scandinavian Journal of Statistics, 47(4), 10641089.
  • McLachlan, G., & Peel, D. (2000). Finite mixture models. John Wiley & Sons.
  • Nkurunziza, S., & Chen, F. (2011). Generalized confidence interval and p-value in location and scale family. Sankhya B, 73(2), 218240.
  • Perng, S., & Littell, R. C. (1976). A test of equality of two normal population means and variances. Journal of the American Statistical Association, 71(356), 968971.
  • Rebai, A., Goffinet, B., & Mangin, B. (1994). Approximate thresholds of interval mapping tests for QTL detection. Genetics, 138(1), 235240.
  • Rebai, A., Goffinet, B., & Mangin, B. (1995). Comparing power of different methods for QTL detection. Biometrics, 51(1), 8799.
  • Schaarschmidt, F., Sill, M., & Hothorn, L. A. (2008). Approximate simultaneous confidence intervals for multiple contrasts of binomial proportions. Biometrical Journal, 50(5), 782792.
  • Sugiyama, F., Churchill, G. A., Higgins, D. C., Johns, C., Makaritsis, K. P., Gavras, H., & Paigen, B. (2001). Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics, 71(1), 7077.
  • Williams, J. P., & Hannig, J. (2019). Nonpenalized variable selection in high-dimensional linear model settings via generalized fiducial inference. The Annals of Statistics, 47(3), 17231753.
  • Wu, R., Ma, C., & Casella, G. (2007). Statistical genetics of quantitative traits: Linkage, maps and QTL. Springer.
  • Wu, W. H., & Hsieh, H. N. (2014). Generalized confidence interval estimation for the mean of delta-lognormal distribution: An application to New Zealand trawl survey data. Journal of Applied Statistics, 41(7), 14711485.
  • Xu, X., & Li, G. (2006). Fiducial inference in the pivotal family of distributions. Science in China Series A, 49(3), 410432.
  • Zhang, H., Chen, H., & Li, Z. (2008). An explicit representation of the limit of the LRT for interval mapping of quantitative trait loci. Statistics & Probability Letters, 78(3), 207213.

To cite this article: Pengcheng Ren, Guanfu Liu, Xiaolong Pu & Yan Li (2021): Generalized
fiducial methods for testing quantitative trait locus effects in genetic backcross studies, Statistical
Theory and Related Fields, DOI: 10.1080/24754269.2021.1984636
To link to this article: