Review Articles

A new result on recovery sparse signals using orthogonal matching pursuit

Xueping Chen ,

School of Mathematics and Physics, Jiangsu University of Technology, Jiangsu, People's Republic of China

chenxueping@jsut.edu.cn

Jianzhong Liu ,

School of Mathematics and Physics, Jiangsu University of Technology, Jiangsu, People's Republic of China

Jiandong Chen

School of Mathematics and Physics, Jiangsu University of Technology, Jiangsu, People's Republic of China

Pages | Received 19 Nov. 2020, Accepted 23 Feb. 2022, Published online: 13 Mar. 2022,
  • Abstract
  • Full Article
  • References
  • Citations

Orthogonal matching pursuit (OMP) algorithm is a classical greedy algorithm widely used in compressed sensing. In this paper, by exploiting the Wielandt inequality and some properties of orthogonal projection matrix, we obtained a new number of iterations required for the OMP algorithm to perform exact recovery of sparse signals, which improve significantly upon the latest results as we know.

References

  • Bernstein, D. S. (2005). Matrix mathematics: Theory, facts, and formulas with application to linear systems theory. Princeton University Press. 
  • Cai, T., & Wang, L. (2011). Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Transactions on Information Theory57(7), 4680–4688. https://doi.org/10.1109/TIT.2011.2146090 
  • Cai, T., Wang, L., & Xu, G. (2010). New bounds for restricted isometry constants. IEEE Transactions on Information Theory56(9), 4388–4394. https://doi.org/10.1109/TIT.2010.2054730 
  • Cai, T., Xu, G., & Zhang, J. (2009). On recovery of sparse signals via l1 minimization. IEEE Transactions on Information Theory55(7), 3388–3397. https://doi.org/10.1109/TIT.2009.2021377 
  • Candes, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory51(12), 4203–4215. https://doi.org/10.1109/TIT.2005.858979 
  • Chang, L. H., & Wu, J. Y. (2014). An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit. IEEE Transactions on Information Theory60(9), 405–408. https://doi.org/10.1109/TIT.18 
  • Davenport, M. A., & Wakin, M. B. (2010). Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Transactions on Information Theory56(9), 4395–4401. https://doi.org/10.1109/TIT.2010.2054653 
  • Huang, S., & Zhu, J. (2011). Recovery of sparse signals using OMP and its variants: convergence analysis based on RIP. Inverse Problems27(3), 035003. https://doi.org/10.1088/0266-5611/27/3/035003
  • Li, H. F., & Wen, J. M. (2019). A new analysis for support recovery with block orthogonal matching pursuit. IEEE Signal Processing Letters26(2), 247–251. https://doi.org/10.1109/LSP.2018.2885919 
  • Liu, C., Fang, Y., & Liu, J. Z. (2017). Some new results about sufficient conditions for exact support recovery of sparse signals via orthogonal matching pursuit. IEEE Transactions on Signal Processing65(17), 4511–4524. https://doi.org/10.1109/TSP.2017.2711543 
  • Livshitz, E. D. (2012). On the efficiency of the orthogonal matching pursuit in compressed sensing. Sbornik Mathematics203(2), 33–44. https://doi.org/10.4213/sm 
  • Livshitz, E. D., & Temlyakov, V. N. (2014). Sparse approximation and recovery by greedy algorithms. IEEE Transactions on Information Theory60(7), 3989–4000. https://doi.org/10.1109/TIT.2014.2320932 
  • Mo, Q. (2015). A sharp restricted isometry constant bound of orthogonal matching pursuit. arXiv: 1501.01708 [Online]. Available: http://arxiv.org/pdf/1501.01708v1.pdf
  • Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory53(12), 4655–4666. https://doi.org/10.1109/TIT.2007.909108
  • Wang, J., & Shim, B. (2016). Exact recovery of sparse signals using orthogonal matching pursuit: How many iterations do we need. IEEE Transactions on Signal Processing64(16), 4194–4202. https://doi.org/10.1109/TSP.2016.2568162
  • Wang, S. G., & Ip, W. -C. (1999). A matrix version of the Wielandt inequality and its application to statistics. Linear Algebra Its Appl2, 118–120. https://doi.org/10.1016/S0024-3795(99)00117-2
  • Wen, J., Zhang, R., & Yu, W. (2020). Signal-dependent performance analysis of orthogonal matching pursuit for exact sparse recovery. IEEE Transactions on Signal Processing68, 5031–5046. https://doi.org/10.1109/TSP.78 
  • Wen, J., Zhou, Z., Wang, J., Tang, X., & Mo, Q. (2017). A sharp condition for exact support recovery with orthogonal matching pursuit. IEEE Transactions on Signal Processing65(6), 1370–1382. https://doi.org/10.1109/TSP.2016.2634550 
  • Wu, R., Huang, W., & Chen, D.-R. (2013). The exact support recovery of sparse signals with noise via orthogonal matching pursuit. IEEE Signal Processing Letters20(4), 403–406. https://doi.org/10.1109/LSP.2012.2233734 
  • Zhang, T. (2011). Sparse recovery with orthogonal matching pursuit under RIP. IEEE Transactions on Information Theory57(9), 6215–6221. https://doi.org/10.1109/TIT.2011.2162263 

To cite this article: Xueping Chen, Jianzhong Liu & Jiandong Chen (2022): A new result on recovery sparse signals using orthogonal matching pursuit, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2022.2048445

To link to this article: https://doi.org/10.1080/24754269.2022.2048445