Review Articles

On the MLE of the Waring distribution

Yanlin Tang ,

KLATASDS-MOE, School of Statistics, East China Normal University Shanghai, People's Republic of China

yltang@fem.ecnu.edu.cn

Jinglong Wang ,

KLATASDS-MOE, School of Statistics, East China Normal University Shanghai, People's Republic of China

Zhongyi Zhu

Department of Statistics and Data Science, Fudan University Shanghai, People's Republic of China

Pages | Received 17 Sep. 2022, Accepted 27 Jan. 2023, Published online: 13 Feb. 2023,
  • Abstract
  • Full Article
  • References
  • Citations

The two-parameter Waring is an important heavy-tailed discrete distribution, which extends the famous Yule-Simon distribution and provides more flexibility when modelling the data. The commonly used EFF (Expectation-First Frequency) for parameter estimation can only be applied when the first moment exists, and it only uses the information of the expectation and the first frequency, which is not as efficient as the maximum likelihood estimator (MLE). However, the MLE may not exist for some sample data. We apply the profile method to the log-likelihood function and derive the necessary and sufficient conditions for the existence of the MLE of the Waring parameters. We use extensive simulation studies to compare the MLE and EFF methods, and the goodness-of-fit comparison with the Yule-Simon distribution. We also apply the Waring distribution to fit an insurance data.

References

  • Garcia, J. M. (2011). A fixed-point algorithm to estimate the Yule–Simon distribution parameter. Applied Mathematics and Computation217(21), 8560–8566. https://doi.org/10.1016/j.amc.2011.03.092 
  • Huete-Morales, M. D., & Marmolejo-Martín, J. A. (2020). The Waring distribution as a low-frequency prediction model: A study of organic livestock farms in Andalusia. Mathematics8(11), 2025. https://doi.org/10.3390/math8112025
  • Mills, T. (2017). A statistical biography of george udny yule: A loafer of the world. Cambridge Scholars Press. 
  • Panaretos, J., & Xekalaki, E. (1986). The stuttering generalized waring distribution. Statistics and Probability Letters4(6), 313–318. https://doi.org/10.1016/0167-7152(86)90051-9 
  • Price, D. (1965). Network of scientific papers. Science149(3683), 510–515. https://doi.org/10.1126/science.149.3683.510 
  • Price, D. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science27(5), 292–306. https://doi.org/10.1002/(ISSN)1097-4571 
  • Rivas, L., & Campos, F. (2021). Zero inflated Waring distribution. Communications in Statistics – Simulation and Computation, to appear. https://doi.org/10.1080/03610918.2021.1944638 
  • Seal, H. L. (1947). A probability distribution of deaths at age x when policies are counted instead of lives. Scandinavian Actuarial Journal1947, 118–43. https://doi.org/10.1080/03461238.1947.10419647 
  • Seal, H. L. (1952). The maximum likelihood fitting of the discrete Pareto law. Journal of the Institute of Actuaries78(1), 115–121. https://doi.org/10.1017/S0020268100052501 
  • Simon, H. A. (1955). On a class of skew distribution functions. Biometrika42(3–4), 425–440. https://doi.org/10.1093/biomet/42.3-4.425 
  • Xekalaki, E. (1983). The univariate generalized Waring distribution in relation to accident theory: Proneness, spells or contagion? Biometrics39(4), 887–895. https://doi.org/10.2307/2531324 
  • Xekalaki, E. (1985). Factorial moment estimation for the bivariate generalized Waring distribution. Statistical Papers26(1), 115-129. https://doi.org/10.1007/BF02932525 
  • Yule, G. U. (1925). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philosophical Transactions of the Royal Society B213, 21–87. 

To cite this article: Yanlin Tang, Jinglong Wang & Zhongyi Zhu (2023) On the MLE of the Waring distribution, Statistical Theory and Related Fields, 7:2, 144-158, DOI: 10.1080/24754269.2023.2176608

To link to this article: https://doi.org/10.1080/24754269.2023.2176608