Review Articles

Applications of Burr III- Weibull quantile function in reliability analysis

G. S. Deepthy ,

Department of Statistics, St. Thomas College (Autonomous), Thrissur affiliated to University of Calicut, Kerala, India

deepthygs@gmail.com

Nicy Sebastian ,

Department of Statistics, St. Thomas College (Autonomous), Thrissur affiliated to University of Calicut, Kerala, India

N. Chandra

Department of Statistics, Ramanujan School of Mathematical Sciences, Pondicherry University, Puducherry, India

nc.stat@gmail.com

Pages | Received 29 Oct. 2022, Accepted 03 Apr. 2023, Published online: 09 May. 2023,
  • Abstract
  • Full Article
  • References
  • Citations

This paper introduces a new family of distributions defined in terms of quantile function. The quantile function introduced here is the sum of quantile functions of life time distributions called Burr III and Weibull. Different distributional characteristics and reliability properties are included in the study. Method of Least Square and Method of L-moments are applied to estimate the parameters of the model. Two real life data sets are used to illustrate the performance of the model.

References

  • Burr, I. W. (1942). Cumulative frequency functions. The Annals of Mathematical Statistics13(2), 215–232. https://doi.org/10.1214/aoms/1177731607 
  • Dagum, C. (2008). A new model of personal income distribution: specification and estimation (pp. 3–25). Springer. https://doi.org/10.1007/978-0-387-72796-7_1 
  • Gilchrist, W. (2000). Statistical modelling with quantile functions. Chapman and Hall/CRC. 
  • Govindarajula, Z. (1977). A class of distributions useful in life testing and reliability. IEEE Transactions on Reliability26(1), 67–69. https://doi.org/10.1109/TR.1977.5215079 
  • Hallinan Jr, A. J. (1993). A review of the Weibull distribution. Journal of Quality Technology25(2), 85–93. https://doi.org/10.1080/00224065.1993.11979431
  • Hankin, R. K., & Lee, A. (2006). A new family of non-negative distributions. Australian & New Zealand Journal of Statistics48(1), 67–78. https://doi.org/10.1111/anzs.2006.48.issue-1 
  • Hastings Jr, C., Mosteller, F., Tukey, J. W., & Winsor, C. P. (1947). Low moments for small samples: A comparative study of order statistics. The Annals of Mathematical Statistics18(3), 413–426. https://doi.org/10.1214/aoms/1177730388 
  • Hosking, J. R. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society: Series B (Methodological)52(1), 105–124. http://www.jstor.org/stable/2345653 
  • Huang, S., & B. O. Oluyede (2014). Exponentiated Kumaraswamy-Dagum distribution with applications to income and lifetime data. Journal of Statistical Distributions and Applications1(1), 1–20. https://doi.org/10.1186/2195-5832-1-8 
  • Lai, C. D., & Xie, M. (2006). Stochastic ageing and dependence for reliability. Springer Science & Business Media. 
  • Lai, C. D., Xie, M., & Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Transactions on Reliability52(1), 33–37. https://doi.org/10.1109/TR.2002.805788 
  • Mielke, P. W. (1973). Another family of distributions for describing and analyzing precipitation data. Journal of Applied Meteorology and Climatology12(2), 275–280. https://doi.org/10.1175/1520-0450(1973)012<0275:AFODFD>2.0.CO;2 
  • Mudholkar, G. S., & Kollia, G. D. (1994). Generalized Weibull family: A structural analysis. Communications in Statistics-Theory and Methods23(4), 1149–1171. https://doi.org/10.1080/03610929408831309 
  • Nadarajah, S., & Kotz, S. (2008). Strength modeling using Weibull distributions. Journal of Mechanical Science and Technology22(7), 1247–1254. https://doi.org/10.1007/s12206-008-0426-5 
  • Nair, N. U., & Sankaran, P. G. (2009). Quantile-based reliability analysis. Communications in Statistics-Theory and Methods38(2), 222–232. https://doi.org/10.1080/03610920802187430 
  • Nair, N. U., Sankaran, P. G., & Balakrishnan, N. (2013). Quantile-based reliability analysis. Springer Science & Business Media. 
  • Nair, N. U., Sankaran, P. G., & Kumar, B. V. (2008). Total time on test transforms of order n and their implications in reliability analysis. Journal of Applied Probability45(4), 1126–1139. https://doi.org/10.1239/jap/1231340238 
  • Parzen, E. (1979). Nonparametric statistical data modeling. Journal of the American Statistical Association74(365), 105–121. https://doi.org/10.1080/01621459.1979.10481621 
  • Ramberg, J. S., & Schmeiser, B. W. (1972). An approximate method for generating symmetric random variables. Communications of the ACM15(11), 987–990. https://doi.org/10.1145/355606.361888 
  • Sankaran, P. G., & Dileep Kumar, M. (2018). A new class of quantile functions useful in reliability analysis. Journal of Statistical Theory and Practice12(3), 615–634. https://doi.org/10.1080/15598608.2018.1448732 
  • Sankaran, P. G., Nair, N. U., & Midhu, N. N. (2016). A new quantile function with applications to reliability analysis. Communications in Statistics-Simulation and Computation45(2), 566–582. https://doi.org/10.1080/03610918.2013.867992
  • Sankaran, P. G., & Unnikrishnan Nair, N. (2009). Nonparametric estimation of hazard quantile function. Journal of Nonparametric Statistics21(6), 757–767. https://doi.org/10.1080/10485250902919046 
  • Sreelakshmi, N., Kattumannil, S. K., & Asha, G. (2018). Quantile based tests for exponentiality against DMRQ and NBUE alternatives. Journal of the Korean Statistical Society47(2), 185–200. https://doi.org/10.1016/j.jkss.2017.12.003 

To cite this article: G. S. Deepthy, Nicy Sebastian & N. Chandra (2023): Applications of Burr III- Weibull quantile function in reliability analysis, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2023.2201096

To link to this article: https://doi.org/10.1080/24754269.2023.2201096