Review Articles

Bayesian autoregressive adaptive refined descriptive sampling algorithm in the Monte Carlo simulation

Djoweyda Ghouil ,

Département de Mathématiques, Faculté des Sciences Exactes, Université de Tizi Ouzou, Tizi Ouzou, Algeria; Laboratoire de Mathématiques appliquées, Facult é des Sciences Exactes et Informatique, Université de Jijel, Jijel, Algeria

Megdouda Ourbih-Tari

Institute of Science, University Center of Tipaza, Tipaza, Algeria; Laboratoire de Mathématiques appliquées, Faculté des Sciences Exactes, Université de Bejaia, Bejaia, Algeria

ourbih.megdouda@cu-tipaza.dz

Pages | Received 13 May. 2021, Accepted 02 Feb. 2023, Published online: 15 May. 2023,
  • Abstract
  • Full Article
  • References
  • Citations

This paper deals with the Monte Carlo Simulation in a Bayesian framework. It shows the importance of the use of Monte Carlo experiments through refined descriptive sampling within the autoregressive model , where and the errors Yt are independent random variables following an exponential distribution of parameter θ. To achieve this, a Bayesian Autoregressive Adaptive Refined Descriptive Sampling (B2ARDS) algorithm is proposed to estimate the parameters ρ and θ of such a model by a Bayesian method. We have used the same prior as the one already used by some authors, and computed their properties when the Normality error assumption is released to an exponential distribution. The results show that B2ARDS algorithm provides accurate and efficient point estimates.

References

  • Albert, J. H., & Chib, S. (1993). Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts. Journal of Business && Economic Statistics11(1), 1–15. 
  • Aloui, A., Zioui, A., Ourbih-Tari, M., & Alioui, A. (2015). A general purpose module using refined descriptive sampling for installation in simulation systems. Computational Statistics30(2), 477–490. https://doi.org/10.1007/s00180-014-0545-7 
  • Amaral Turkmann, M. A. (1990). Bayesian analysis of an autoregressive process with exponential white noise. Statistics21(4), 601–608. https://doi.org/10.1080/02331889008802270 
  • Andel, J. (1988). On AR(1) processes with exponential white noise. Communications in Statistics - Theory and Methods17(5), 1481–1495. http://doi.org/10.1080/03610928808829693 
  • Ashby, D. (2006). Bayesian statistics in medicine: A 25 year review. Statistics in Medicine25(21), 3589–3631. https://doi.org/10.1002/sim.v25:21 
  • Baghdali-Ourbih, L., Ourbih-Tari, M., & Dahmani, A. (2017). Implementing refined descriptive sampling into three phase discrete-event simulation models. Communications in Statistics : Simulation and Computation. Taylor and Francis46(5), 4035–4049. https://doi.org/10.1080/03610918.2015.1085557 
  • Barnett, G., Koln, R., & Sheather, S. (1996). Bayesian estimation of an autoregressive model using Markov chain Monte Carlo. Journal of Econometrics74(2), 237–254. https://doi.org/10.1016/0304-4076(95)01744-5
  • Beaumont, M. A., & Rannala, B. (2004). The Bayesian revolution in genetics. Nature Reviews Genetics5(4), 251–261. https://doi.org/10.1038/nrg1318 
  • Boubalou, M., Ourbih-Tari, M., Aloui, A., & Zioui, A. (2019). Comparing M/G/1 queue estimators in Monte Carlo simulation through the tested generator getRDS and the proposed getLHS using variance reduction. Monte Carlo Methods and Applications25(2), 177–186. https://doi.org/10.1515/mcma-2019-2033
  • Box, G., Jinkins, G., & Reinsel, G. (1976). Time series analysis: Forecasting and control. John Wiley and Sons. 
  • Corander, J. (2006). Is there a real Bayesian revolution in pattern recognition for bioinformatics. Current Bioinformatics1(2), 161–165. https://doi.org/10.2174/157489306777011932 
  • Diaz, J., & Farah, J. (1981). Bayesian identification of autoregressive processes. In Proceedings of the S.L, 22nd NBER-NSF. Seminar on Bayesian inference in econometrics
  • Geweke, J. (1999). Using simulation methods for Bayesian econometric models. Inference, Development, and Communication Econometric Reviews18(1), 1–126. https://doi.org/10.1080/07474939908800428 
  • Ghosh, M., & Heo, J. (2003). Default Bayesian priors for regression models with first-order autoregressive residuals. Journal of Time Series Analysis24(3), 269–282. https://doi.org/10.1111/jtsa.2003.24.issue-3 
  • Ibazizen, M., & Fellag, H. (2003). Bayesian estimation of an AR(1) process with exponential white noise. Journal of Theoretical and Applied Statistics37(5), 365–372. https://doi.org/10.1080/0233188031000078042 
  • Idjis, K., Ourbih-Tari, M., & Baghdali-Ourbih, L. (2017). Variance reduction in M/M/1 retrial queues using refined descriptive sampling. Communications in Statistics – Simulation and Computation46(6), 5002–5020. https://doi.org/10.1080/03610918.2016.1140778 
  • Keller, A., Heinrich, S., & Niederreiter, H. (2008). Monte Carlo and quasi Monte Carlo methods. Springer.
  • Kumar, J., & Agiwal, V. (2019). Bayesian estimation for fully shifted panel AR(1) time series model. Thai Journal of Mathematics17, 167–183. https://thaijmath.in.cmu.ac.th 
  • Loh, W. L. (1996). On latin hypercube sampling. Annals of Statistics24(5), 2058–2080. https://doi.org/10.1214/aos/1069362310 
  • Marriot, J., & Smith, A. (1992). Reparametrization aspects of numerical Bayesian methods for autoregressive moving average models. Journal of Time Series Analysis13(4), 307–331. https://doi.org/10.1111/j.1467-9892.1992.tb00111.x 
  • Mckay, M. D., Conover, W. J., & Beckman, R. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics21(2), 239–245. https://doi.org/10.2307/1268522 
  • Monahan, J. (1984). Fully Bayesian analysis of ARMA time series models. Journal of Econometrics21(3), 307–331. https://doi.org/10.1016/0304-4076(83)90048-9 
  • Ourbih-Tari, M., & Azzal, M. (2017). Survival function estimation with non parametric adaptative refined descriptive sampling algorithm : A case study. Communication in Statistics-Theory and Methods46(12), 5840–5850. https://doi.org/10.1080/03610926.2015.1065328 
  • Ourbih-Tari, M., Zioui, A., & Aloui, A. (2017). Variance reduction in the simulation of a stationary M/G/1 queuing system using refined descriptive sampling. Communication in Statistics-Simulation and Computation46(5), 3504–3515. https://doi.org/10.1080/03610918.2015.1096374 
  • Pereira, I., & Amaral-Turkman, M. A. (2004). Bayesian prediction in threshold autoregressive models with exponential white noise. sociedad De Estadistica E Investigacion Operativa13(1), 45–64. https://doi.org/10.1007/BF02603000 
  • Saliby, E. (1990). Descriptive sampling: A better approach to Monte Carlo simulation. Journal of the Operational Research Society41(12), 1133–1142. https://doi.org/10.1057/jors.1990.180 
  • Smith, A. F. M., & Robert, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society5(5), 3–23. https://doi.org/10.1111/j.2517-6161.1993.tbo1466.X 
  • Stein, M. (1987). Large sample properties of simulations using latin hypercube sampling. Technometrics29(2), 143–151. https://doi.org/10.1080/00401706.1987.10488205
  • Suparman, S., & Rusiman, M. S. (2018). Hierarchical Bayesian estimation for stationary autoregressive models using reversible jump MCMC algorithm. International Journal of Engineering && Technology7(430), 64–67. https://eprints.uthm.edu.my/id/eprint/5110 
  • Tamiti, A., Ourbih-Tari, M., Aloui, A., & Idjis, K. (2018). The use of variance reduction, relative error and bias in testing the performance of M/G/1 retrial queues estimators in Monte Carlo simulation. Monte Carlo Methods and Applications24(3), 165–178. https://doi.org/10.1515/mcma-2018-0015
  • Tari, M., & Dahmani, A. (2005a). Flowshop simulator using different sampling methods. Operational Research5(2), 261–272. https://doi.org/10.1007/BF02944312 
  • Tari, M., & Dahmani, A. (2005b). The three phase discrete event simulation using some sampling methods. International Journal of Applied Mathematics and Statistics3(5), 37–48.
  • Tari, M., & Dahmani, A. (2006). Refined descriptive sampling: A better approach to Monte Carlo simulation. Simulation Modelling: Practice and Theory14(2), 143–160. https://doi.org/10.1016/j.simpat.2005.04.001

To cite this article: Djoweyda Ghouil & Megdouda Ourbih-Tari (2023) Bayesian autoregressive adaptive refined descriptive sampling algorithm in the Monte Carlo simulation, Statistical Theory and Related Fields, 7:3, 177-187, DOI: 10.1080/24754269.2023.2180225

To link to this article: https://doi.org/10.1080/24754269.2023.2180225