Review Articles

D-optimal saturated designs for main effects and interactions in 2^k-factorial experiments

Francois K. Domagni ,

Department of Mathematics, California State University, Northridge, Northridge, CA, USA

kouakou-francois.domagni@csun.edu

A. S. Hedayat ,

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA

Bikas Kumar Sinha

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA

Pages 186-194 | Received 24 Nov. 2023, Accepted 05 Apr. 2024, Published online: 18 Apr. 2024,
  • Abstract
  • Full Article
  • References
  • Citations

In a 2^k-factorial experiment with limited resources, when practitioners can identify the non-negligible effects and interactions beforehand, it is common to run an experiment with a saturated design that ensures the unbiased estimation of the non-negligible parameters of interest. We propose a method for the construction of D-optimal saturated designs for the mean, the main effects, and the second-order interactions of one factor with the remaining factors. In the process, we show the problem is just as hard as the Hadamard determinant problem.

References

  • Chadjipantelis, T., Kounias, S., & Moyssiadis, C. (1987). The maximum determinant of 21×21 (+1, -1)-matrices and D-optimal designs. Journal of Statistical Planning and Inference16(2), 167–178. https://doi.org/10.1016/0378-3758(87)90066-8
  • Cohn, J. H. E. (1989). On determinants with elements ±1, II. Bulletin of the London Mathematical Society21(1), 36–42. https://doi.org/10.1112/blms/21.1.36
  • Cohn., J. H. E. (2000). Almost D-optimal designs. Utilitas Mathematica57, 121–128.
  • Hedayat, A. S., & Pesotan, H. (1992). Two-level factorial designs for main-effects and selected two-factor interactions. Statistica Sinica2, 453–464.
  • Hedayat, A. S., & Pesotan, H. (2007). Tools for constructing optimal two-level factorial designs for a linear model containing main effects and one two-factor interaction. Journal of Statistical Planning and Inference137(4), 1452–1463. https://doi.org/10.1016/j.jspi.2006.04.005
  • Hedayat, A. S., & Zhu, H. (2011). An effective algorithm for searching for D-optimal saturated two-level factorial designs. Journal of Statistical Theory and Applications10(2), 209–227.
  • Kiefer, J. (1959). Optimum experimental designs. Journal of the Royal Statistical SocietyB21, 272–319.
  • Metropolis, N. (1969). Spectra of determinant values in (0,1) matrices. In A. O. L. Atkin & B. J. Birch (Eds.), Computers in Number Theory: Proceedings of the Science Research Atlas Symposium No. 2 held at Oxford, 18–23 August 1969 (pp. 271–276). Academic Press.
  • Orrick, W. P. (2005). The maximal {−1,1}-determinant of order 15. Metrika62(2-3), 195–219. https://doi.org/10.1007/s00184-005-0410-3
  • Phoa, F. K. H., Wong, W. K., & Xu, H. (2009). The need of considering the interactions in the analysis of screening designs. Journal of Chemometrics23(10), 545–553. https://doi.org/10.1002/cem.v23:10
  • Smith, Warren D. (1988). Studies in computational geometry motivated by mesh generation [Unpublished doctoral dissertation]. Princeton University.
  • Vander Heyden, Y., Jimidar, M., Hund, E., Niemeijer, N., Peeters, R., Smeyers-Verbeke, J., Massart, D. L., & Hoogmartens, J. (1999). Determination of system suitability limits with a robustness test. Journal of Chromatography A845(1-2), 145–154. https://doi.org/10.1016/S0021-9673(99)00328-3
  • Wald, A. (1943). On the efficient design of statistical investigations. The Annals of Mathematical Statistics14(2), 134–140. https://doi.org/10.1214/aoms/1177731454
  • Živković, M. (2006). Classification of small (0,1) matrices. Linear Algebra and Its Applications414(1), 310–346. https://doi.org/10.1016/j.laa.2005.10.010

To cite this article: Francois K. Domagni, A. S. Hedayat & Bikas Kumar Sinha (18 Apr 2024): D-optimal saturated designs for main effects and interactions in 2k -factorial experiments, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2024.2341983

To link to this article: https://doi.org/10.1080/24754269.2024.2341983