Review Articles

glabcmcmc: a Python package for ABC-MCMC with local and global moves

Xuefei Cao ,

NITFID, School of Statistics and Data Science, Nankai University, Tianjin, People's Republic of China

wangshj1@shanghaitech.edu.cn

Shijia Wang ,

Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, People's Republic of China

shijia_wang@nankai.edu.cn

Yongdao Zhou

NITFID, School of Statistics and Data Science, Nankai University, Tianjin, People's Republic of China

ydzhou@nankai.edu.cn

Pages | Received 25 Jan. 2025, Accepted 15 Apr. 2025, Published online: 05 May. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

We introduce a new Python package glabcmcmc, which implements an approximate Bayesian computation Markov chain Monte Carlo (ABC-MCMC) algorithm that combines global and local proposal strategies to address the limitations of standard ABC-MCMC. The proposed package includes key innovations such as the determination of global proposal frequencies, the implementation of a hybrid ABC-MCMC algorithm integrating global and local proposals, and an adaptive version that utilizes normalizing flows and gradient-based computations for enhanced proposal mechanisms. The functionality of the software package is demonstrated through illustrative examples.

Your browser may not support PDF viewing. Please click to download the file.

References

  • Barthelmé, S., & Chopin, N. (2014). Expectation propagation for likelihood-free inference. Journal of the American Statistical Association109(505), 315–333. https://doi.org/10.1080/01621459.2013.864178
  • Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics162(4), 2025–2035. https://doi.org/10.1093/genetics/162.4.2025
  • Cao, X., Wang, S., & Zhou, Y. (2024a). An adaptive approximate Bayesian computation MCMC with Global-Local proposals. arXiv:2412.15644.
  • Cao, X., Wang, S., & Zhou, Y. (2024b). Using early rejection Markov chain Monte Carlo and Gaussian processes to accelerate ABC methods. Journal of Computational and Graphical Statistics Online. https://doi.org/10.1080/10618600.2024.2379349
  • Csilléry, K., François, O., & Blum, M. G. (2012). ABC: An R package for approximate Bayesian computation (ABC). Methods in Ecology and Evolution3(3), 475–479. https://doi.org/10.1111/mee3.2012.3.issue-3
  • Easy, A. B. C. (2013). Performing efficient approximate Bayesian computation sampling schemes using R. Methods in Ecology and Evolution4(7), 684–687.
  • Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T., & Stumpf, M. P. (2010). ABC-SysBio–approximate Bayesian computation in Python with GPU support. Bioinformatics (Oxford, England)26(14), 1797–1799.
  • Marjoram, P., Molitor, J., Plagnol, V., & Tavaré, S. (2003). Markov chain Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences100(26), 15324–15328. https://doi.org/10.1073/pnas.0306899100
  • Picchini, U. (2014). Inference for SDE models via Approximate Bayesian Computation. Journal of Computational and Graphical Statistics23(4), 1080–1100. https://doi.org/10.1080/10618600.2013.866048
  • Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., & Feldman, M. W. (1999). Population growth of human Y chromosomes: A study of Y chromosome microsatellites. Molecular Biology and Evolution16(12), 1791–1798. https://doi.org/10.1093/oxfordjournals.molbev.a026091
  • Raynal, L., Marin, J. M.., Pudlo, P., Ribatet, M., Robert, C. P., & Estoup, A. (2019). ABC random forests for Bayesian parameter inference. Bioinformatics (Oxford, England)35(10), 1720–1728.
  • Wegmann, D., Leuenberger, C., & Excoffier, L. (2009). Efficient Approximate Bayesian Computation coupled with Markov chain Monte Carlo without likelihood. Genetics182(4), 1207–1218. https://doi.org/10.1534/genetics.109.102509 .https://doi.org/10.1534/genetics.109.102509
  • Wegmann, D., Leuenberger, C., Neuenschwander, S., & Excoffier, L. (2010). ABCtoolbox: A versatile toolkit for approximate Bayesian computations. BMC Bioinformatics11, 1–7. https://doi.org/10.1186/1471-2105-11-116

To cite this article: Xuefei Cao, Shijia Wang & Yongdao Zhou (2025) glabcmcmc: a Python package for ABC-MCMC with local and global moves, Statistical Theory and Related Fields, 9:2, 168-177, DOI: 10.1080/24754269.2025.2495505

To link to this article: https://doi.org/10.1080/24754269.2025.2495505