Review Articles

Parameter estimation for fractional autoregressive process with seasonal structure

Chunhao Cai ,

School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai, People's Republic of China

Yiwu Shang

School of Mathematical Sciences, Nankai University, Tianjin, People's Republic of China

shangyiwu@mail.nankai.edu.cn

Pages | Received 09 Oct. 2024, Accepted 11 Jul. 2025, Published online: 05 Aug. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

This paper introduces a new kind of seasonal fractional autoregressive process (SFAR) driven by fractional Gaussian noise (fGn). The new model includes a standard seasonal AR model and fGn. The estimation of the parameters of this new model has to solve two problems: nonstationarity from the seasonal structure and long memory from fGn. We innovatively solve these by getting a stationary subsequence, making a stationary additive sequence and then obtaining their spectral density. Then we use one-step procedure for Generalized Least Squares Estimator (GLSE) and the Geweke Porter–Hudak (GPH) method to get better results. We prove that both the initial and one-step estimators are consistent and asymptotically normal. Finally, we use Monte Carlo simulations with finite-sized samples to demonstrate the performance of these estimators. Moreover, through empirical analysis, it is shown that the SFAR model can simulate some real-world phenomena better than general models.

References

  • Beran, J., Feng, Y., Ghosh, S., & Kulik, R. (2013). Long-Memory Processes: Probabilistic Properties and Statistical Methods. Springer.
  • Bisognin, C., & Lopes, S. R. C. (2009). Properties of seasonal long memory processes. Mathematical and Computer Modelling49(9–10), 1837–1851. https://doi.org/10.1016/j.mcm.2008.12.003
  • Brockwell, P. J., & Davis, R. A. (1991). Time Series: Theory and Methods. Springer Science & Business Media.
  • Brouste, A., Cai, C., & Kleptsyna, M. (2014). Asymptotic properties of the MLE for the autoregressive process coefficients under stationary Gaussian noise. Mathematical Methods of Statistics23(2), 103–115. https://doi.org/10.3103/S1066530714020021
  • Brouste, A., Soltane, M., & Votsi, I. (2020). One-step estimation for the fractional Gaussian noise at high-frequency. ESAIM: Probability and Statistics24, 827–841. https://doi.org/10.1051/ps/2020022
  • Carlin, J., & Dempster, A. (1989). Sensitivity analysis of seasonal adjustments: Empirical case studies. Journal of the American Statistical Association84(405), 6–20. https://doi.org/10.1080/01621459.1989.10478729
  • Chan, N. H., & Terrin, N. (1995). Inference for unstable long-memory processes with applications to fractional unit root autoregressions. The Annals of Statistics23(5), 1662–1683.
  • Chatfield, C., & Prothero, D. (1973). Box–Jenkins seasonal forecasting: Problems in a case study. Journal of the Royal Statistical Society: Series A (General)136(3), 295–315. https://doi.org/10.2307/2344994
  • Cohen, S., Gamboa, F., Lacaux, C., & Loubes, J. M. (2013). LAN property for some fractional type Brownian motion. ALEA: Latin American Journal of Probability and Mathematical Statistics10(1), 91–106. https://hal.science/hal-00638121(open in a new window).
  • Esstafa, Y. (2019). Long-memory Time Series Models with Dependent Innovations [Unpublished doctoral dissertation]. Université Bourgogne Franche-Comté.
  • Fox, R., & Taqqu, M. S. (1986). Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. The Annals of Statistics14(2), 517–532. https://doi.org/10.1214/aos/1176349936
  • Franco, G. C., & Reisen, V. A. (2007). Bootstrap approaches and confidence intervals for stationary and non-stationary long-range dependence processes. Physica A: Statistical Mechanics and its Applications375(2), 546–562. https://doi.org/10.1016/j.physa.2006.08.027
  • Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis4(4), 221–238. https://doi.org/10.1111/jtsa.1983.4.issue-4
  • Gloter, A., & Yoshida, N. (2021). Adaptive estimation for degenerate diffusion processes. Electronic Journal of Statistics, 15(1): 1424-1472. 
  • Hariz, S. B., Brouste, A., Cai, C., & Soltane, M. (2024). Fast and asymptotically-efficient estimation in an autoregressive process with fractional type noise. Journal of Statistical Planning and Inference232, 106148. https://doi.org/10.1016/j.jspi.2024.106148
  • Harrison, P. J. (1965). Short-term sales forecasting. Journal of the Royal Statistical Society: Series C (Applied Statistics)14(2-3), 102–139.
  • Hosking, J. R. (1984). Modeling persistence in hydrological time series using fractional differencing. Water Resources Research20(12), 1898–1908. https://doi.org/10.1029/WR020i012p01898
  • Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers116(1), 770–799. https://doi.org/10.1061/TACEAT.0006518
  • Hurvich, C. M., Deo, R., & Brodsky, J. (1998). The mean squared error of Geweke and Porter-Hudak's estimator of the memory parameter of a long-memory time series. Journal of Time Series Analysis19(1), 19–46. https://doi.org/10.1111/jtsa.1998.19.issue-1
  • Kong, J., & Lund, R. (2023). Seasonal count time series. Journal of Time Series Analysis44(1), 93–124. https://doi.org/10.1111/jtsa.v44.1
  • Kutoyants, Y. A., & Motrunich, A. (2016). On multi-step MLE-process for Markov sequences. Metrika79(6), 705–724. https://doi.org/10.1007/s00184-015-0574-4
  • Le Cam, L. (1956). On the asymptotic theory of estimation and testing hypotheses. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, volume 1: Contributions to the Theory of Statistics (Vol. 3, pp. 129–157).
  • Lieberman, O., Rosemarin, R., & Rousseau, J. (2012). Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary Gaussian processes. Econometric Theory28(2), 457–470. https://doi.org/10.1017/S0266466611000399
  • Marinucci, D., & Robinson, P. M. (2001). Semiparametric frequency domain analysis of fractional cointegration. Journal of Econometrics105(1), 225–247. https://doi.org/10.1016/S0304-4076(01)00076-8
  • Robinson, P. M. (1995). Log-periodogram regression of time series with long range dependence. The Annals of Statistics23(3), 1048–1072. https://doi.org/10.1214/aos/1176324636
  • Robinson, P. M. (2010). Long memory models. In Macroeconometrics and Time Series Analysis (pp. 163–168). Springer.
  • Soltane, M. (2024). Asymptotic efficiency in autoregressive processes driven by stationary Gaussian noise. Stochastic Models40(1), 70–96. https://doi.org/10.1080/15326349.2023.2202227
  • Tsay, R. S. (2013). Multivariate Time Series Analysis: With R and Financial Applications. John Wiley & Sons.

To cite this article: Chunhao Cai & Yiwu Shang (05 Aug 2025): Parameter estimation for fractional autoregressive process with seasonal structure, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2537487

To link to this article: https://doi.org/10.1080/24754269.2025.2537487