Review Articles

Tail dependence of bivariate skew normal triangular array with varying correlation coefficients

Shuang Hu ,

School of Science, Chongqing University of Posts and Telecommunications, Chongqing, People’s Republic of China

Zuoxiang Peng ,

School of Mathematics and Statistics, Southwest University, Chongqing, People’s Republic of China

pzx@swu.edu.cn

Qian Xiong

School of Mathematical and Physical Sciences, Chongqing University of Science and Technology, Chongqing, People’s Republic of China

Pages | Received 22 Mar. 2025, Accepted 22 Aug. 2025, Published online: 03 Oct. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

The tail dependence coefficient measures extremal dependence between two random variables. In this note, we investigate the tail dependence of a bivariate skew normal triangular array with equal skewness and varying correlation coefficients {𝜌_{𝑛},𝑛≥1} satisfying the Hüsler-Reiss condition via a redefined sequential tail dependence coefficient. For more detailed insights, the convergence rate to the sequential tail dependence coefficients is also established under a refined Hüsler-Reiss condition. Numerical experiments are conducted to illustrate the theoretical results.

References

  • Aleiyouka, M., Berred, A., & Ahsanullah, M. (2017). Tail dependence coefficient of generalized hyperbolic distribution. Journal of Statistical Theory and Applications16(3), 375–381. https://doi.org/10.2991/jsta.2017.16.3.9
  • Azzalini, A., & Valle, A. D. (1996). The multivariate skew-normal distribution. Biometrika83(4), 715–726. https://doi.org/10.1093/biomet/83.4.715
  • Banachewicz, K., & van Der Vaart, A. (2008). Tail dependence of skewed grouped t-distributions. Statistics & Probability Letters78(15), 2388–2399. https://doi.org/10.1016/j.spl.2008.02.018
  • Beranger, B., Padoan, S., Xu, Y., & Sisson, S. A. (2019). Extremal properties of the multivariate extended skew-normal distribution, part B. Statistics & Probability Letters147, 105–114. https://doi.org/10.1016/j.spl.2018.11.031
  • Bortot, P. (2010). Tail dependence in bivariate skew-normal and skew-t distributions. www2.stat.nibo.it/bortot/ricerca/paper-sn-2.pdf(open in a new window)
  • Capitanio, A. (2010). On the approximation of the tail probability of the scalar skew-normal distribution. Metron68(3), 299–308. https://doi.org/10.1007/BF03263541
  • Castro, L. (1987). Uniform rates of convergence in extreme-value theory, normal and gamma models. Annales Scientifiques de l’Univesité de Clermont-Ferrand 2, Série Probabilités et Applications90(6), 25–41.
  • Christoffersen, P., Jacobs, K., Jin, X., & Langlois, H. (2018). Dynamic dependence and diversification in corporate credit. Review of Finance22(2), 521–560. https://doi.org/10.1093/rof/rfx034
  • Coles, S., Heffernan, J., & Tawn, J. (1999). Dependence measures for extreme value analyses. Extremes2(4), 339–365. https://doi.org/10.1023/A:1009963131610
  • Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: Properties and pitfalls. In M. H. A. Dempster (Ed.), Risk management: Value at risk and beyond (pp. 176–233). Cambridge University Press.
  • Engelke, S., Opitz, T., & Wadsworth, J. (2019). Extremal dependence of random scale constructions. Extremes22(4), 623–666. https://doi.org/10.1007/s10687-019-00353-3
  • Fortin, A. P., Simonato, J. G., & Dionne, G. (2023). Forecasting expected shortfall: Should we use a multivariate model for stock market factors? International Journal of Forecasting39(1), 314–331. https://doi.org/10.1016/j.ijforecast.2021.11.010
  • Fung, T., & Seneta, E. (2010). Tail dependence for two skew t distributions. Statistics & Probability Letters80(9-10), 784–791. https://doi.org/10.1016/j.spl.2010.01.011
  • Fung, T., & Seneta, E. (2016). Tail asymptotics for the bivariate skew normal. Journal of Multivariate Analysis144, 129–138. https://doi.org/10.1016/j.jmva.2015.11.002
  • Fung, T., & Seneta, E. (2018). Quantile function expansion using regularly varying functions. Methodology and Computing in Applied Probability20(4), 1091–1103. https://doi.org/10.1007/s11009-017-9593-0
  • Guegan, D., & Zhang, J. (2010). Change analysis of a dynamic copula for measuring dependence in multivariate financial data. Quantitative Finance10(4), 421–430. https://doi.org/10.1080/14697680902933041
  • Hammerstein, E. A. V. (2016). Tail behaviour and tail dependence of generalized hyperbolic distributions. In J. Kallsen, & A. Papapantoleon (Eds.), Advanced modelling in mathematical finance: In honour of Ernst Eberlein (pp. 3–40). Springer International Publishing.
  • Hashorva, E. (2010). On the residual dependence index of elliptical distributions. Statistics & Probability Letters80(13-14), 1070–1078. https://doi.org/10.1016/j.spl.2010.03.001
  • Hashorva, E. (2012). Exact tail asymptotics in bivariate scale mixture models. Extremes15(1), 109–128. https://doi.org/10.1007/s10687-011-0129-7
  • Heffernan, J. E. (2000). A directory of coefficients of tail dependence. Extremes3(3), 279–290. https://doi.org/10.1023/A:1011459127975
  • Hu, S., Peng, Z., & Nadarajah, S. (2022). Tail dependence functions of the bivariate Hüsler–Reiss model. Statistics & Probability Letters180,109235. https://doi.org/10.1016/j.spl.2021.109235
  • Hult, H., & Lindskog, F. (2002). Multivariate extremes, aggregation and dependence in elliptical distributions. Advances in Applied Probability34(3), 587–608. https://doi.org/10.1239/aap/1033662167
  • Hüsler, J., & Reiss, R. D. (1989). Maxima of normal random vectors: Between independence and complete dependence. Statistics & Probability Letters7(4), 283–286. https://doi.org/10.1016/0167-7152(89)90106-5
  • Ito, K., & Yoshiba, T. (2025). Dynamic asymmetric tail dependence structure among multi-asset classes for portfolio management: Dynamic skew-t copula approach. International Review of Economics & Finance97,103724. https://doi.org/10.1016/j.iref.2024.103724
  • Lao, X., Peng, Z., & Nadarajah, S. (2023). Tail dependence functions of two classes of bivariate skew distributions. Methodology and Computing in Applied Probability25(1), 10. https://doi.org/10.1007/s11009-023-09986-1
  • Ledford, A. W., & Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. Biometrika83(1), 169–187. https://doi.org/10.1093/biomet/83.1.169
  • Ling, C., & Peng, Z. (2015). Tail dependence for two skew slash distributions. Statistics and Its Interfaces8(1), 63–69. https://doi.org/10.4310/SII.2015.v8.n1.a6
  • Loperfido, N. (2002). Statistical implications of selectively reported inferential results. Statistics & Probability Letters56(1), 13–22. https://doi.org/10.1016/S0167-7152(01)00052-9
  • Padoan, S. A. (2011). Multivariate extreme models based on underlying skew-t and skew-normal distributions. Journal of Multivariate Analysis102(5), 977–991. https://doi.org/10.1016/j.jmva.2011.01.014
  • Resnick, S. I. (2008). Extreme values, regular variation, and point processes. Springer Science & Business Media.
  • Schmidt, R. (2002). Tail dependence for elliptically contoured distributions. Mathematical Methods of Operations Research55(2), 301–327. https://doi.org/10.1007/s001860200191
  • Sepanski, J. H. (2020). A note on distortion effects on the strength of bivariate copula tail dependence. Statistics & Probability Letters166,108894. https://doi.org/10.1016/j.spl.2020.108894
  • Sibuya, M. (1960). Bivariate extreme statistics. Annals of the Institute of Statistical Mathematics11(2), 195–210. https://doi.org/10.1007/BF01682329
  • Zhang, Z. (2021). On studying extreme values and systematic risks with nonlinear time series models and tail dependence measures. Statistical Theory and Realted Fields5(1), 1–25. https://doi.org/10.1080/24754269.2020.1856590

To cite this article: Shuang Hu, Zuoxiang Peng & Qian Xiong (03 Oct 2025): Tail dependence of bivariate skew normal triangular array with varying correlation coefficients, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2555132

To link to this article: https://doi.org/10.1080/24754269.2025.2555132