DUNFORD N. Spectral theory II [J]. Resolutions of the identity. Pacific J Math, 1952, 2(4): 559-614.DUNFORD N. Spectral operators [J]. Pacific J Math, 1954, 4(3): 321-354.DUNFORD N. A survey of the theory of spectral operators [J]. Bull Amer Math Soc, 1958, 64: 217-274.ZHU S, LI CH G. SVEP and compact perturbations [J]. Journal of Mathematical Analysis and Applications, 2011, 380: 69-75.FINCH J K. The single valued extension property on a Banach space [J]. Pacific J Math, 1975, 58: 61-69.AIENA P. Fredholm and Local Spectral Theory, with Applications to Multipliers [M]. Dordrecht: Kluwer Academic Publishers, 2004.LAURSEN K B, NEUMANN M M. An Introduction to Local Spectral Theorey [M]. London Math Soc Monogr New Ser 20. New York: The Clarendon press, 2000.KIM Y, KO E, LEE J E. Opeators with the single valued extension property [J]. Bull Koerean Math Soc, 2006, 43: 509-517.LI J X. The single valued extension property for operator weighted shifts [J]. Northeast Math J, 1994, 10(1): 99-103.DUGGAL B P. Upper triangular operator matrices with single-valued extension property [J]. J Math Anal, 2009, 349: 85-89.SHI W J, CAO X H. Stability of single-valued extension property for 2*2 upper triangular operator [J]. Journal of University of Chinese Academy of Sciences, 2013, 30(4): 450-453, 484.GRABINER S. Uniform ascent and descent of bounded operators [J]. Math Soc Japan, 1982, 34(2): 317-337.HARTE R E, LEE W Y, LITTLEJOIN L L. On generalized Riesz points [J]. J Operator Theory, 2002, 47: 187-196.JI Y Q. Quasitriangular+small compact=strongly irreducible [J]. Trans Amer Math Soc, 1999, 351(11): 4657-4673.HERRERO D A. Economical compact perturbations, II, filling in the holes [J]. J Operator Theory, 1988, 19(1): 25-42. |