华东师范大学学报(自然科学版) ›› 2022, Vol. 2022 ›› Issue (4): 13-25.doi: 10.3969/j.issn.1000-5641.2022.04.002

• 数学 • 上一篇    下一篇

离散时间正规鞅泛函空间中的广义计数算子

周玉兰*(), 孔华芳, 程秀强, 薛蕊, 陈嘉   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2021-01-12 出版日期:2022-07-25 发布日期:2022-07-19
  • 通讯作者: 周玉兰 E-mail:zhouylw123@163.com
  • 基金资助:
    国家自然科学基金(11861057)

Generalized number operators defined in the space of a discrete time normal martingale functional

Yulan ZHOU*(), Huafang KONG, Xiuqiang CHENG, Rui XUE, Jia CHEN   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2021-01-12 Online:2022-07-25 Published:2022-07-19
  • Contact: Yulan ZHOU E-mail:zhouylw123@163.com

摘要:

在离散时间正规鞅平方可积泛函空间 $L^{2}(M)$ 中引入了一族线性算子 $\{N_{h};h\in\mathcal{P_{+}}(\mathbb{N})\}$ . $N_{h}$ $L^{2}(M)$ 中正的、稠定、自伴闭线性算子, 一般未必有界. 给出 $N_{h}$ 有界的充分必要条件; 讨论了 $N_{h}$ $h$ 的依赖性, 即 $N_{h}$ 是关于 $h$ 严格单调递增的算子值映射; 证明了 $\mathbb{N}$ 上非负可和函数空间 $l^{1}_{+}(\mathbb{N})$ 与有界广义计数算子族所成子空间是等距的; 讨论了广义计数算子列强收敛和一致收敛的条件; 对单调收敛函数列, 讨论了其定义域收敛的条件和相应广义计数算子列收敛的条件; 最后证明了 $\{N_{h};h\in\mathcal{P_{+}}(\mathbb{N})\}$ $\mathcal{S}_{0}(M)$ 中的一族可交换观测.

关键词: 广义计数算子, 算子收敛性, 可交换观测

Abstract:

A family of linear operators $\{N_{h};h\in\mathcal{P_{+}}(\mathbb{N})\}$ in $L^{2}(M)$ are defined. Firstly, we prove that $N_{h}$ is a positive, densely defined, self-adjoint closed linear operator. In general, $N_{h}$ is not bounded, hence, we explore the sufficient and necessary conditions such that $N_{h}$ is bounded. Secondly, we consider the dependence of $N_{h}$ on $h$ : $N_{h}$ is strictly increasing with respect to $h$ , and the operator-valued mapping $N_{h}$ is an isometry from $l^{1}_{+}(\mathbb{N})$ to the subspace of bounded generalized number operators on $L^{2}(M)$ , where $l^{1}_{+}(\mathbb{N})$ is the space of the summable function on $\mathbb{N}$ . We consider the conditions such that $\{N_{h_{n}};n\geqslant1\}$ is strongly and uniformly convergent. If $\{h_{n};n\geqslant1\}$ is convergent monotonically to $h$ , the domain of $\{N_{h_{n}};n\geqslant1\}$ and $N_{h}$ have some interesting properties, we show, furthermore, that a convergent family of $\{N_{h_{n}};n\geqslant1\}$ can be obtained. We prove that $\{N_{h};h\in\mathcal{P_{+}}(\mathbb{N})\}$ is commutative observable on $\mathcal{S}_{0}(M)$ .

Key words: generalized number operator, convergence of operators, commutative observables

中图分类号: