华东师范大学学报(自然科学版) ›› 2024, Vol. 2024 ›› Issue (6): 24-38.doi: 10.3969/j.issn.1000-5641.2024.06.003
顾晨铭(), 杨静, 李晔, 黄晔, 邬言, 尹国宇, 金芮合, 杨毅, 刘敏()
收稿日期:
2024-08-15
接受日期:
2024-09-20
出版日期:
2024-11-25
发布日期:
2024-11-29
通讯作者:
刘敏
E-mail:52283901014@stu.ecnu.edu.cn;mliu@geo.ecnu.edu.cn
作者简介:
顾晨铭, 男, 博士研究生, 研究方向为新污染物环境行为及风险评估.E-mail: 52283901014@stu.ecnu.edu.cn
基金资助:
Chenming GU(), Jing YANG, Ye LI, Ye HUANG, Yan WU, Guoyu YIN, Ruihe JIN, Yi YANG, Min LIU()
Received:
2024-08-15
Accepted:
2024-09-20
Online:
2024-11-25
Published:
2024-11-29
Contact:
Min LIU
E-mail:52283901014@stu.ecnu.edu.cn;mliu@geo.ecnu.edu.cn
摘要:
城市间的高度融合, 使城市群成为全球经济发展的重要载体之一. 然而, 城市群快速的经济发展和产业结构演变所推动的新技术、新材料和新产品的应用, 以及高强度的人类活动, 导致新污染物环境排放和累积的问题日益严重. 新污染物 (contaminants of emerging concern, CECs)的复杂性、多样性及其在表层环境中的迁移、转化、累积与生态风险, 使得其成为当前表层环境过程研究中的核心科学问题. 本文系统阐述了城市群CECs多介质时空分异特征与迁移机制, 归纳总结了城市群CECs源排放与贡献的国内外研究进展, 综述了城市群CECs多介质归趋模型及生态健康风险评估方法, 探讨了当前城市群CECs污染研究中存在的不足, 并展望了今后研究中需要重点解决的科学问题.
中图分类号:
顾晨铭, 杨静, 李晔, 黄晔, 邬言, 尹国宇, 金芮合, 杨毅, 刘敏. 城市群新污染物多介质归趋、风险及模拟研究进展[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 24-38.
Chenming GU, Jing YANG, Ye LI, Ye HUANG, Yan WU, Guoyu YIN, Ruihe JIN, Yi YANG, Min LIU. Advances in research on multimedia fate, risks, and simulation of contaminants of emerging concern in urban agglomerations[J]. Journal of East China Normal University(Natural Science), 2024, 2024(6): 24-38.
1 | LIU L, ZHEN X, WANG X, et al.. Legacy and novel halogenated flame retardants in seawater and atmosphere of the Bohai Sea: Spatial trends, seasonal variations, and influencing factors. Water Research, 2020, 184, 116117. |
2 | DING F, LI Y, HE T, et al.. Urban agglomerations as an environmental dimension of antibiotics transmission through the “One Health” lens. Journal of Hazardous Materials, 2024, 465, 133283. |
3 | WANG P, ZHANG Q, LI Y, et al.. Airborne persistent toxic substances (PTSs) in China: Occurrence and its implication associated with air pollution. Environmental Science−Processes & Impacts, 2017, 19 (8): 983- 999. |
4 | REN H W, TROGER R, AHRENS L, et al.. Screening of organic micropollutants in raw and drinking water in the Yangtze River Delta, China. Environmental Sciences Europe, 2020, 32 (1): 67- 79. |
5 | GRIMM N B, FAETH S H, GOLUBIEWSKI N E, et al.. Global change and the ecology of cities. Science, 2008, 319 (5864): 756- 760. |
6 | BARROSO P J, SANTOS J L, MARTíN J, et al.. Emerging contaminants in the atmosphere: Analysis, occurrence and future challenges. Critical Reviews in Environmental Science and Technology, 2019, 49 (2): 104- 171. |
7 | 中华人民共和国生态环境部. 新污染物治理行动方案 [Z/OL]. (2021-10-11)[2024-09-30]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202110/W020211011600835423708.pdf. |
8 | DRIS R, GASPERI J, SAAD M, et al.. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?. Marine Pollution Bulletin, 2016, 104 (1): 290- 293. |
9 | HUA Z, YU L, LIU X, et al.. Perfluoroalkyl acids in surface sediments from the lower Yangtze River: Occurrence, distribution, sources, inventory, and risk assessment. Science of the Total Environment, 2021, 798, 149332. |
10 | HE C T, ZHENG X B, YAN X, et al.. Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: Spatial characteristics and implications for human exposure. Ecotoxicology and Environmental Safety, 2017, 140, 109- 115. |
11 | PULLAGURALA V L R, RAWAT S, ADISA I O, et al.. Plant uptake and translocation of contaminants of emerging concern in soil. Science of the Total Environment, 2018, 636, 1585- 1596. |
12 | YANG L, ZHANG Y, KANG S, et al.. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of the Total Environment, 2021, 780, 146546. |
13 | BOOTS B, RUSSELL C W, GREEN D S.. Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 2019, 53 (19): 11496- 11506. |
14 | WEN Z H, CHEN L, MENG X Z, et al.. Occurrence and human health risk of wastewater–derived pharmaceuticals in a drinking water source for Shanghai, East China. Science of the Total Environment, 2014, 490, 987- 993. |
15 | MENG X, VENKATESAN A K, NI Y, et al.. Organic contaminants in Chinese sewage sludge: A meta-analysis of the literature of the past 30 years. Environmental Science & Technology, 2016, 50 (11): 5454- 5466. |
16 | TIAN Z, PETER K T, GIPE A D, et al.. Suspect and nontarget screening for contaminants of emerging concern in an urban estuary. Environmental Science & Technology, 2020, 54 (2): 889- 901. |
17 | FENTON S E, DUCATMAN A, BOOBIS A, et al.. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environmental Toxicology and Chemistry, 2021, 40 (3): 606- 630. |
18 | SUNDERLAND E M, HU X C, DASSUNCAO C, et al.. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science & Environmental Epidemiology, 2019, 29 (2): 131- 147. |
19 | EVICH M G, DAVIS M J B, MCCORD J P, et al.. Per- and polyfluoroalkyl substances in the environment. Science, 2022, 375 (6580): eabg9065. |
20 | WANG F, XIANG L, Kelvin S L, et al.. Emerging contaminants: A One Health perspective. The Innovation, 2024, 5 (4): 100612. |
21 | DYE C.. One Health as a catalyst for sustainable development. Nature Microbiology, 2022, 7 (4): 467- 468. |
22 | LI Q, WANG P, HU B, et al.. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface water of China: National exposure distributions and probabilistic risk assessment. Archives of Environmental Contamination and Toxicology, 2021, 81 (3): 470- 481. |
23 | SEO S H, SON M H, SHIN E S, et al.. Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. Journal of Hazardous Materials, 2019, 364, 19- 27. |
24 | ZHEN X, LI Y, TANG J, et al.. Decabromodiphenyl ether versus decabromodiphenyl ethane: Source, fate, and influencing factors in a coastal sea nearing source region. Environmental Science & Technology, 2021, 55 (11): 7376- 7385. |
25 | WEI Y L, BAO L J, WU C C, et al.. Characterization of anthropogenic impacts in a large urban center by examining the spatial distribution of halogenated flame retardants. Environmental Pollution, 2016, 215, 187- 194. |
26 | DRAGE D S, NEWTON S, DE WIT C A, et al.. Concentrations of legacy and emerging flame retardants in air and soil on a transect in the UK West Midlands. Chemosphere, 2016, 148, 195- 203. |
27 | SALAMOVA A, HITES R A.. Discontinued and alternative brominated flame retardants in the atmosphere and precipitation from the Great Lakes basin. Environmental Science & Technology, 2011, 45 (20): 8698- 8706. |
28 | SAINI A, HARNER T, CHINNADHURAI S, et al.. GAPS-megacities: A new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air. Environmental Pollution, 2020, 267, 115416. |
29 | KUNZ A, SCHNEIDER F, ANTHONY N, et al.. Microplastics in rivers along an urban-rural gradient in an urban agglomeration: Correlation with land use, potential sources and pathways. Environmental Pollution, 2023, 321, 121096. |
30 | JIN X, FU X, LU W, et al.. The effects of riverside cities on microplastics in river water: A case study on the Southern Jiangsu Canal, China. Science of the Total Environment, 2023, 858, 159783. |
31 | SEKUDEWICZ I, DĄBROWSKA A M, SYCZEWSKI M D.. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Science of the Total Environment, 2021, 762, 143111. |
32 | DAI L, WANG Z, GUO T, et al.. Pollution characteristics and source analysis of microplastics in the Qiantang River in southeastern China. Chemosphere, 2022, 293, 133576. |
33 | CAMARGO A L G, GIRARD P, SANZ-LAZARO C, et al.. Microplastics in sediments of the Pantanal Wetlands, Brazil. Frontiers in Environmental Science, 2022, 10, 1- 12. |
34 | ZHENG D, YIN G, LIU M, et al.. Global biogeography and projection of soil antibiotic resistance genes. Science Advances, 2022, 8 (46): eabq8015. |
35 | BAO J, LIU W, LIU L, et al.. Perfluorinated compounds in urban river sediments from Guangzhou and Shanghai of China. Chemosphere, 2010, 80 (2): 123- 130. |
36 | 武倩倩, 吴强, 宋帅, 等.. 天津市主要河流和土壤中全氟化合物空间分布、来源及风险评价. 环境科学, 2021, 42 (8): 3682- 3694. |
37 | CODLING G, STURCHIO N C, ROCKNE K J, et al.. Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair. Environmental Pollution, 2018, 237, 396- 405. |
38 | CHRISTENSEN E R, ZHANG R, CODLING G, et al.. Poly- and per-fluoroalkyl compounds in sediments of the Laurentian Great Lakes: Loadings, temporal trends, and sources determined by positive matrix factorization. Environmental Pollution, 2019, 255, 113166. |
39 | ZHANG Z W, SUN Y X, SUN K F, et al.. Brominated flame retardants in mangrove sediments of the Pearl River Estuary, South China: Spatial distribution, temporal trend and mass inventory. Chemosphere, 2015, 123, 26- 32. |
40 | POMA G, ROSCIOLI C, GUZZELLA L.. PBDE, HBCD, and novel brominated flame retardant contamination in sediments from Lake Maggiore (Northern Italy). Environmental Monitoring and Assessment, 2014, 186 (11): 7683- 7692. |
41 | SUN Z, ZHANG C, YAN H, et al.. Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China. Chemosphere, 2017, 174, 127- 135. |
42 | WANG Y, SHI Y, CAI Y.. Spatial distribution, seasonal variation and risks of legacy and emerging per- and polyfluoroalkyl substances in urban surface water in Beijing, China. Science of the Total Environment, 2019, 673, 177- 183. |
43 | NGUYEN V T, REINHARD M, KARINA G Y.. Occurrence and source characterization of perfluorochemicals in an urban watershed. Chemosphere, 2011, 82 (9): 1277- 1285. |
44 | 史锐, 毛若愚, 张梦, 等.. 乌梁素海流域地表水中全氟化合物分布、来源及其生态风险. 环境科学, 2021, 42 (2): 663- 672. |
45 | ZHANG W, WANG P, ZHU Y, et al.. Brominated flame retardants in atmospheric fine particles in the Beijing-Tianjin-Hebei region, China: Spatial and temporal distribution and human exposure assessment. Ecotoxicology and Environmental Safety, 2019, 171, 181- 189. |
46 | ZHU J, XU A, SHI M, et al.. Atmospheric deposition is an important pathway for inputting microplastics: Insight into the spatiotemporal distribution and deposition flux in a mega city. Environmental Pollution, 2024, 341, 123012. |
47 | LIU S, LI Y, WANG F, et al.. Temporal and spatial variation of microplastics in the urban rivers of Harbin. Science of the Total Environment, 2024, 910, 168373. |
48 | GE L, WEI W, CAO S, et al.. Occurrence, spatiotemporal distribution and risks of macrolide antibiotics in the Weihe River and its tributaries, North-central China. Emerging Contaminants, 2024, 10 (4): 100353. |
49 | BOGDANIĆ N, MOČIBOB L, VIDOVIĆ T, et al.. Correction: Azithromycin consumption during the COVID-19 pandemic in Croatia, 2020. PLoS One, 2022, 17 (7): e0272324. |
50 | LIU B, ZHANG H, XIE L, et al.. Spatial distribution and partition of perfluoroalkyl acids (PFAAs) in rivers of the Pearl River Delta, southern China. Science of the Total Environment, 2015, 524/525, 1- 7. |
51 | XIAO F, SIMCIK M F, HALBACH T R, et al.. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U. S. metropolitan area: Migration and implications for human exposure. Water Research, 2015, 72, 64- 74. |
52 | QI H, LI W L, LIU L Y, et al.. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning. Science of the Total Environment, 2014, 491-492, 60- 66. |
53 | KIM U J, WANG Y, LI W, et al.. Occurrence of and human exposure to organophosphate flame retardants/plasticizers in indoor air and dust from various microenvironments in the United States. Environment International, 2019, 125, 342- 349. |
54 | 韩琦, 张帆, 余波平, 等.. 基于生命周期评价的深圳市典型阻燃剂环境影响分析. 广东化工, 2023, 483 (50): 135- 139. |
55 | LI L, ZHAI Z, LIU J, et al.. Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012. Chemosphere, 2015, 129, 100- 109. |
56 | 缪一祎. 长江流域典型 PFASs排放清单构建与污染负荷模拟 [D]. 上海: 华东师范大学, 2024. |
57 | ZHANG Q, YING G, PAN C, et al.. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 2015, 49 (11): 6772- 6782. |
58 | MÜLLER C E, SPIESS N, GERECKE A C, et al.. Quantifying diffuse and point inputs of perfluoroalkyl acids in a nonindustrial river catchment. Environmental Science & Technology, 2011, 45 (23): 9901- 9909. |
59 | KITTLAUS S, CLARA M, VAN GILS J, et al.. Coupling a pathway-oriented approach with tailor-made monitoring as key to well-performing regionalized modelling of PFAS emissions and river concentrations. Science of the Total Environment, 2022, 849, 157764. |
60 | LIU Z, LU Y, WANG P, et al.. Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China. Science of the Total Environment, 2017, 580, 1247- 1256. |
61 | LIU Z, LU Y, SHI Y, et al.. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China. Environment International, 2017, 106, 37- 47. |
62 | LINDIM C, COUSINS I T, VANGILS J.. Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model. Environmental Pollution, 2015, 207, 97- 106. |
63 | YU L, LIU X, HUA Z.. Occurrence, distribution, and risk assessment of perfluoroalkyl acids in drinking water sources from the lower Yangtze River. Chemosphere, 2022, 287, 132064. |
64 | LIU B, ZHANG H, YAO D, et al.. Perfluorinated compounds (PFCs) in the atmosphere of Shenzhen, China: Spatial distribution, sources and health risk assessment. Chemosphere, 2015, 138, 511- 518. |
65 | ZUSHI Y, TAMADA M, KANAI Y, et al.. Time trends of perfluorinated compounds from the sediment core of Tokyo Bay, Japan (1950s—2004). Environmental Pollution, 2010, 158 (3): 756- 763. |
66 | YADAV I C, DEVI N L, LI J, et al.. Environmental concentration and atmospheric deposition of halogenated flame retardants in soil from Nepal: Source apportionment and soil-air partitioning. Environmental Pollution, 2018, 233, 642- 654. |
67 | PAN C, YING G, LIU Y, et al.. Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China. Chemosphere, 2014, 114, 16- 25. |
68 | LI Q Q, WANG T, ZENG Y, et al.. Brominated flame retardants (BFRs) in PM2.5 associated with various source sectors in Southern China. Environmental Science-Processes & Impacts, 2021, 23 (1): 179- 187. |
69 | DING N, CHEN S J, WANG T, et al.. Halogenated flame retardants (HFRs) and water-soluble ions (WSIs) in fine particulate matter (PM2.5) in three regions of South China. Environmental Pollution, 2018, 238, 823- 832. |
70 | ZHAO Y, MA J, QIU X, et al.. Gridded field observations of polybrominated diphenyl ethers and decabromodiphenyl ethane in the atmosphere of North China. Environmental Science & Technology, 2013, 47 (15): 8123- 8129. |
71 | BĂLAN S, BRUTON T, HARRIS K, et al.. The total mass of per- and polyfluoroalkyl substances (PFASs) in California cosmetics. Environmental Science & Technology, 2024, 58, 12101- 12112. |
[1] | 李保, 金芮合, 张雨欣, 阮蔓菁, 邬言, 杨静, 刘敏. 长江口有机磷酸酯环境多介质传输分配行为[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 99-113. |
[2] | 金芮合, 杨妤昀, 邬言, 杨静, 刘敏. 多功能区道路灰尘中有机磷酸酯分布累积特征[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 62-73. |
[3] | 杨静, 邬言, 李月, 刘霞, 杨丁业, 陈圆圆, 金芮合, 李晔, 刘敏. 上海农田土壤中六溴环十二烷的赋存特征及健康风险评估[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 178-187. |
[4] | 杨丁业, 杨静, 金芮合, 丁方方, 张雨欣, 刘敏. 合肥市土壤中卤代阻燃剂的赋存特征及风险评估[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 161-177. |
[5] | 崔铁峰, 李道季. 人体微纳塑料研究现状及存在的主要问题[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 1-13. |
[6] | 李志福, 吴永红, 刘雪梅, 李丹. 基于稻虾共作系统水稻收割后水体水质及沉积物重金属风险评估[J]. 华东师范大学学报(自然科学版), 2024, 2024(1): 122-133. |
[7] | 孙晴, 梁冠宇, 武延军, 武斌, 田春岐, 王伟. 数据驱动的开源软件供应链可维护性风险分析方法[J]. 华东师范大学学报(自然科学版), 2022, 2022(5): 90-99. |
[8] | 陈立侨;李云凯;侯俊利;李恺;陈勇. 船舶压载水导致的生物入侵及其防治对策(特约综述)[J]. 华东师范大学学报(自然科学版), 2005, 2005(5/6): 40-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||