1 |
CALLAWAY J C, BORGNIS E L, TURNER R E, et al.. Carbon sequestration and sediment accretion in San Francisco Bay tidal wetlands. Estuaries and Coasts, 2012, 35 (5): 1163- 1181.
|
2 |
HUSSEIN A H, RABENHORST M C, TUCKER M L.. Modeling of carbon sequestration in coastal marsh soils. Soil Science Society of America Journal, 2004, 68 (5): 1786- 1795.
|
3 |
KELLER J K, TAKAGI K K, BROWN M E, et al.. Soil organic carbon storage in restored salt marshes in Huntington Beach, California. Bulletin, Southern California Academy of Sciences, 2012, 111 (2): 153- 161.
|
4 |
MCLEOD E, CHMURA G L, BOUILLON S, et al.. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 2011, 9 (10): 552- 560.
|
5 |
周金戈, 覃国铭, 张靖凡, 等.. 中国盐沼湿地蓝碳碳汇研究进展. 热带亚热带植物学报, 2022, 30 (6): 765- 781.
|
6 |
王俊力, 付子轼, 乔红霞, 等.. 枯萎期芦苇收割时间对湿地脱氮效果及根系呼吸代谢的影响. 环境科学研究, 2021, 34 (8): 1909- 1917.
|
7 |
王瀚强, 王淑琼, 方燕, 等.. 崇明岛环岛芦苇地上部分固碳能力估算. 湿地科学, 2014, 12 (5): 539- 543.
|
8 |
ENGLONER A I.. Structure, growth dynamics and biomass of reed (Phragmites australis)-A review. Flora-Morphology, Distribution, Functional Ecology of Plants, 2009, 204 (5): 331- 346.
|
9 |
上海市人民政府. 上海市自然保护地体系和发展规划(2024-2035) [EB/OL]. (2023-10-23)[2024-04-18]. https://lhsr.sh.gov.cn/cmsres/91/91bb13132c994493949a25df4f8d85da/6a547461937e25b114021f2d802b6ac1.pdf
|
10 |
陈雪初, 戴雅奇, 黄超杰, 等.. 上海鹦鹉洲湿地水质复合生态净化系统设计. 中国给水排水, 2017, 33 (20): 66- 69.
|
11 |
张春松, 杨华蕾, 由文辉, 等.. 新恢复湿地对近岸水域水质的净化效果研究. 中国给水排水, 2021, 37 (3): 65- 68.
|
12 |
YANG H L, TANG J W, ZHANG C S, et al.. Enhanced carbon uptake and reduced methane emissions in a newly restored wetland. Journal of Geophysical Research: Biogeosciences, 2020, 125 (1): e2019JG005222.
|
13 |
王勇辉, 焦黎.. 艾比湖湿地土壤有机碳及储量空间分布特征. 生态学报, 2016, 36 (18): 5893- 5901.
|
14 |
VALIELA I, TEAL J M, ALLEN S D, et al.. Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology, 1985, 89 (1): 29- 54.
|
15 |
BOUCHARD V, LEFEUVRE J C.. Primary production and macro-detritus dynamics in a European salt marsh: Carbon and nitrogen budgets. Aquatic Botany, 2000, 67 (1): 23- 42.
|
16 |
CHEN G Z, BAI J H, YU L, et al.. Effects of ecological restoration on carbon sink and carbon drawdown of degraded salt marshes with carbon-rich additives application. Land Degradation & Development, 2022, 33 (12): 2103- 2114.
|
17 |
房金松, 俞益辉. 湿地植物枯落物分解研究——不同水温条件下芦苇枯落物的分解及营养动态 [J]. 环境工程, 2019, 37(增刊): 792-796.
|
18 |
许大全.. 气孔的不均匀关闭与光合作用的非气孔限制. 植物生理学通讯, 1995, 31 (4): 246- 252.
|
19 |
王新新, 韩建刚, 徐传红, 等.. 碳氮比改变对崇明东滩湿地反硝化与硝态氮氨化的影响. 南京林业大学学报(自然科学版), 2020, 44 (5): 174- 180.
|
20 |
BONETTI G, LIMPERT K E, BRODERSEN K E, et al.. The combined effect of short-term hydrological and N-fertilization manipulation of wetlands on CO2, CH4, and N2O emissions. Environmental Pollution, 2022, 294, 118637.
|
21 |
BLAGODATSKAYA E, BLAGODATSKY S, ANDERSON T H, et al.. Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS One, 2014, 9 (4): e93282.
|
22 |
汤宏, 沈健林, 张杨珠, 等.. 秸秆还田与水分管理对稻田土壤微生物量碳、氮及溶解性有机碳、氮的影响. 水土保持学报, 2013, 27 (1): 240- 246.
|
23 |
陶宝先, 王晶东, 陈庆海, 等.. 氮添加对黄河三角洲滨海湿地芦苇养分再吸收效率的影响. 生态学报, 2022, 42 (3): 914- 921.
|
24 |
HUANG T, YANG H, HUANG C, et al.. Effects of nitrogen management and straw return on soil organic carbon sequestration and aggregate-associated carbon. European Journal of Soil Science, 2018, 69 (5): 913- 923.
|
25 |
YU L, BAI J H, HUANG L B, et al.. Carbon-rich substrates altered microbial communities with indication of carbon metabolism functional shifting in a degraded salt marsh of the Yellow River Delta, China. Journal of Cleaner Production, 2022, 331, 129898.
|