1 |
MELGAARD.. S, SELETSKIY D, POLYAK V, et al. Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80 K. Optics Express, 2014, 22 (7): 7756- 7764.
|
2 |
VICENTE R, CITTADINO G, DI LIETO A, et al.. Operation of a fiber-coupled laser-cooler down to cryogenic temperatures. Optics Express, 2022, 30 (8): 12929- 12936.
|
3 |
EPSTEIN.. R I, BUCHWALD M I, EDWARDS B C, et al. Observation of laser-induced fluorescent cooling of a solid. Nature, 1995, 377, 500- 503.
|
4 |
KNALL J M, DIGONNET M J F.. Design of high-power radiation-balanced silica fiber lasers with a doped core and cladding. Journal of Lightwave Technology, 2021, 39 (8): 2497- 2504.
|
5 |
KNALL J, ENGHOLM M, BOILARD T, et al.. Radiation-balanced silica fiber laser. Optica, 2021, 8 (6): 830- 833.
|
6 |
SHEIK-BAHAE M, YANG Z.. Optimum operation of radiation-balanced lasers. IEEE Journal of Quantum Electronics, 2020, 56 (1): 1000109.
|
7 |
SELETSKIY D V, MELGAARD S D, BIGOTTA S, et al.. Laser cooling of solids to cryogenic temperatures. Nature Photonics, 2010, 4 (3): 161- 164.
|
8 |
ZHANG J, LI D H, CHEN R J, et al. Laser cooling of a semiconductor by 40 Kelvin: An optical refrigerator based on cadmium sulfide nanoribbions [J]. Proceedings of the SPIE: Laser Refrigeration of Solids VI, 2013, 8638: 863808.
|
9 |
GRAGOSSIAN A, GHASEMKHANI M, MENG J W, et al. Optical refrigeration inches toward liquid-nitrogen temperatures [EB/OL]. (2017-07-03)[2024-02-16]. https://spie.org/news/6840-optical-refrigeration-inches-toward-liquid-nitrogen-temperatures.
|
10 |
DONG G Z, ZHANG X L, LI L.. Energy transfer enhanced laser cooling in Ho3+ and Tm3+ co-doped lithium yttrium fluoride. Journal of the Optical Society of America B, 2013, 30 (4): 939- 944.
|
11 |
DONG G Z, ZHANG X L, CUI J H.. Double-pulse excitation scheme for laser cooling of solids in the superradiance regime. Journal of the Optical Society of America B, 2015, 32 (2): 324- 330.
|
12 |
SHEIK-BAHAE M, EPSTEIN R I.. Laser cooling of solids. Laser & Photonics Reviews, 2009, 3 (1/2): 67- 84.
|
13 |
SELETSKIY D V, EPSTEIN R, SHEIK-BAHAE M.. Laser cooling in solids: Advances and prospects. Reports on Progress in Physics, 2016, 79 (9): 096401.
|
14 |
贾佑华, 印建平.. Tm3+ 掺杂材料激光冷却的研究. 光学学报, 2005, 25 (10): 1375-1379.
|
15 |
ROSTAMI S, ALBRECHT A R, VOLPI A, et al.. Observation of optical refrigeration in a holmium-doped crystal. Photonics Research, 2019, 7 (4): 445- 451.
|
16 |
ROSTAMI S, ALBRECHT A R, VOLPI A, et al.. Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers. Optics Letters, 2019, 44 (6): 1419- 1422.
|
17 |
HOYT C W, SHEIK-BAHAE M, EPSTEIN R I, et al.. Observation of anti-Stokes fluorescence cooling in thulium-doped glass. Physical Review Letters, 2000, 85 (17): 3600-3603.
|
18 |
FERNANDEZ J, GARCIA-ADEVA A J, BALDA R.. Anti-Stokes laser cooling in bulk erbium-doped materials. Physical Review Letters, 2006, 97 (3): 033001.
|
19 |
DONG G Z, MA Y X, ZHAO X, et al.. Model for optical refrigeration of Ho3+-doped fluoride crystals. Journal of the Optical Society of America B, 2022, 39 (12): 3195- 3199.
|
20 |
EDWARDS B C, BUCHWALD M I, EPSTEIN R I... Development of the Los Alamos solid-state optical refrigerator. Review of Scientific Instruments, 1998, 69 (5): 2050- 2055.
|
21 |
XIA X J, PANT A, GANAS A S, et al... Quantum point defects for solid‐state laser refrigeration. Advanced Materials, 2021, 33 (23): 1905406.
|
22 |
VOLPI A, MENG J W, GRAGOSSIAN A, et al.. Optical refrigeration: The role of parasitic absorption at cryogenic temperatures. Optics Express, 2019, 27 (21): 29710- 29718.
|
23 |
CHANG H, ZHANG J. Refrigeration technologies of cryogenic chips [J]. Chip, 2023, 2(3): 100054.
|
24 |
MENG J W. The development of all solid-state optical cryo-cooler [D]. Albuquerque, NM, USA: The University of New Mexico, 2020.
|
25 |
HEHLEN M P, MENG J W, ALBRECHT A R, et al. First demonstration of an all-solid-state optical cryocooler[J]. Light: Science & Applications, 2018, 7: 15.
|
26 |
KOCK J L, ALBRECHT A R, EPSTEIN R I, et al.. Optical refrigeration of payloads to T< 125 K. Optics Letters, 2022, 47 (18): 4720- 4723.
|
27 |
LEI Y Q, ZHONG B, YANG T, et al. Laser cooling of Yb3+:LuLiF4 crystal below cryogenic temperature to 121 K [J]. Applied Physics Letters, 2022, 120(23): 231101.
|
28 |
罗昊, 钟标, 雷永清, 等.. Yb3+:LuLiF4晶体激光制冷的热负载管理. 红外与激光工程, 2018, 47 (12): 41- 45.
|
29 |
袁燕飞, 雷永清, 杨元旭, 等.. 固体材料激光冷却中基于光纤传输DLT测温技术的研究. 现代传输, 2022, (02): 31- 34.
|
30 |
GRAGOSSIAN A, MENG J W, GHASEMKHANI M, et al.. Astigmatic Herriott cell for optical refrigeration. Optical Engineering, 2017, 56 (1): 011110.
|
31 |
MELGAARD S D. Cryogenic optical refrigeration: Laser cooling of solids below 123 K [D]. Albuquerque, NM, US: The University of New Mexico, 2013.
|
32 |
雷永清. 掺杂Yb3+ 的Y3Al5O12晶体与LuLiF4晶体的激光冷却 [D]. 上海: 华东师范大学, 2022.
|