华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (5): 66-75.doi: 10.3969/j.issn.1000-5641.2025.05.007

• 开源与人工智能在教育中的创新实践 • 上一篇    下一篇

大语言模型与开源生态协同的人工智能课程创新探索与研究

许立君(), 杨丽, 黄子祎*()   

  1. 湖北大学 计算机学院, 武汉 430062
  • 收稿日期:2025-07-01 接受日期:2025-08-11 出版日期:2025-09-25 发布日期:2025-09-25
  • 通讯作者: 黄子祎 E-mail:xulijun@hubu.edu.cn;ziyihuang@hubu.edu.cn
  • 作者简介:许立君, 女, 副教授, 研究方向为计算机视觉、开源生态数字孪生、人工智能、医学大数据分析和辅助诊断. E-mail: xulijun@hubu.edu.cn
  • 基金资助:
    湖北大学2024年国家级创新创业学院建设“揭榜挂帅”项目 (HDCJY2402)

Synergy between large language models and open source ecosystems in AI education

Lijun XU(), Li YANG, Ziyi HUANG*()   

  1. School of Computer Science, Hubei University, Wuhan 430062, China
  • Received:2025-07-01 Accepted:2025-08-11 Online:2025-09-25 Published:2025-09-25
  • Contact: Ziyi HUANG E-mail:xulijun@hubu.edu.cn;ziyihuang@hubu.edu.cn

摘要:

为应对教学资源滞后、实践能力不足及价值引导缺失等挑战, 探索并构建了以“大语言模型 (Large Language Model, LLM) 与开源生态”双轮驱动的创新教学模式. 该模式通过引入开源生态中的真实工程资源与社区协作机制, 提供动态更新的代码仓库与应用场景, 提升学生工程实践能力. 同时借助LLM的智能交互能力, 实现个性化学习路径、自动化反馈与沉浸式思政场景生成. 研究结合“人工智能及应用”课程实施教学实验, 量化分析了学生在参与度、学习效率与社会责任感方面的变化. 结果显示, 该协同模式显著提升了学生的技术素养、伦理认知和跨平台迁移能力, 为相关课程改革具备高实践性和可推广性提供了参考范式.

关键词: 人工智能, 大语言模型, 开源生态, 教育创新

Abstract:

To address the challenges of outdated teaching resources, insufficient practical skills, and a lack of value-oriented guidance in education, this study constructs an innovative pedagogical model driven by the dual-engine of large language model (LLM) and open source ecosystem. The model is designed to bridge the gap between theoretical knowledge and real-world engineering practice by integrating open-source tools, dynamic code repositories, and authentic project scenarios into the curriculum. Meanwhile, LLMs are employed as intelligent teaching assistants to enable personalized learning paths, generate automated feedback, and support immersive ideological and ethical modules. This research was implemented in the course “Artificial intelligence and its applications”, where a mixed-method evaluation was conducted. Quantitative metrics such as attendance, interaction frequency, repository contributions, and assignment performance were used to measure student engagement and learning effectiveness. Additionally, a set of custom-designed assessment formulas was used to evaluate cross-platform transferability and community participation. Experimental results from 90 undergraduate students showed that learners engaged in open-source collaboration and LLM-assisted learning achieved significantly higher scores in both technical proficiency and value cognition than those in the control group. The study demonstrates that the integration of LLMs and open-source collaboration can effectively enhance student autonomy, promote engineering skills, and reinforce ethical awareness. This dual-driven model not only offers a feasible approach for modernizing AI education but also contributes to the broader goal of cultivating socially responsible and technically competent AI talents.

Key words: artificial intelligence, large language model, open source ecosystem, instructional reform

中图分类号: