华东师范大学学报(自然科学版) ›› 2010, Vol. 2010 ›› Issue (3): 92-97.

• 应用数学与基础数学 • 上一篇    下一篇

多场耦合方程的多尺度渐近解

侯磊1,2, 张家健1,仇璘2,3   

  1. 1.上海大学数学系, 上海 200444;2.上海高校计算科学E-研究院上海交大研究所, 上海 200030; 3.上海交通大学数学系, 上海 200240
  • 收稿日期:2009-10-14 修回日期:2009-12-15 出版日期:2010-05-25 发布日期:2010-05-25
  • 通讯作者: 侯磊

Multi-scale asymptotic solutions of multi-field coupled equations

HOU Lei1,2, ZHANG Jia-jian1, Qiu Lin2,3   

  1. 1.Department of Mathematics, Shanghai University,Shanghai 200444, China 2.Computational Sciences, E-Institute of Shanghai Universities at SJTU,Shanghai 200240, China; 3. Department of Mathematics, Shanghai JiaoTong University,Shanghai 200240, China
  • Received:2009-10-14 Revised:2009-12-15 Online:2010-05-25 Published:2010-05-25
  • Contact: HOU Lei

摘要: 介绍由约束场和受重力影响的对流扰动耦合而成的衰减平衡向量场动力学方程的渐近求解.为分析实验室内微观与自然界中宏观现象的正则和奇异扰动问题,运用复合尺度方法进行傅立叶调和分析、尺度变化, 并引进新的参数,将一个复杂的三维约束耦合动力学方程转化成复空间里一维的边界层问题.并做了渐近摄动 分析,给出两个多场耦合中扰动问题的特征函数边界层解法例,在例,2,中对流场扰动问题分析, 得出从指数振荡解过渡到代数解的转点.

关键词: 耦合动力学方程, 边界层问题, 渐近摄动分析, 转点, 耦合动力学方程, 边界层问题, 渐近摄动分析, 转点

Abstract: This article described the complex fluid and the field constraints with gravitational effects.The asymptotic solution determines the dissipative equilibrium vector field of the coupled convection disturbance kinetic equations. For the analysis of the canonical and singular perturbation problems we analyze the micro-phenomena of the laboratory and macro-phenomena of nature.Our approach is to use the complex Fourier harmonic analysis, re-scale, and the introduction of new parameters to reduce the three-dimensional coupling dynamic equations into a one-dimensional complex space of boundary-layer. Two examples for the problem of the perturbation characteristic function were given with asymptotic analysis. Example 2 explains the turning point of the transition that from the index oscillation solution to the algebraic solution.

Key words: boundary problem, asymptotic perturbation analysis, turning point, coupling dynamics equations, boundary problem, asymptotic perturbation analysis, turning point

中图分类号: