华东师范大学学报(自然科学版)

• 数学 • 上一篇    下一篇

微小摄动下SVEP与Weyl型定理的关系

董 炯, 曹小红, 刘俊慧   

  1. 陕西师范大学 数学与信息科学学院, 西安 710119
  • 收稿日期:2015-12-21 出版日期:2016-11-25 发布日期:2017-01-13
  • 通讯作者: 曹小红, 女, 教授, 博士生导师, 研究方向为算子理论. E-mail: xiaohongcao@snnu.edu.cn.
  • 基金资助:
    国家自然科学基金(11371012, 11471200, 11571213); 陕西师范大学中央高校基本科研业务费专项资金(GK201601004, 2016CSY020)

The relationship between SVEP and Weyl type theorem under small perturbations

DONG Jiong, CAO Xiao-hong, LIU Jun-hui   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710119, China
  • Received:2015-12-21 Online:2016-11-25 Published:2017-01-13

摘要:

设H为复的无限维可分Hilbert空间, B(H)为H上有界线性算子的全体. 若σ(T)\σω(T)=π00(T), 则称T ∈ B(H)满足Weyl定理, 其中σ(T)和σω(T)分别表示算子T的谱和Weyl谱,π00(T)={λ ∈ isoσ(T): 0<dim N(T-λI)<∞}; 当σ(T)\σω(T)   π00(T), 时, 称T ∈ B(H)满足Browder定理. 本文利用算子的广义Kato分解性质, 刻画了算子在微小紧摄动下单值延拓性质(SVEP)与Weyl型定理之间的关系.

关键词: 单值延拓性质, Browder定理, Weyl定理

Abstract:

Let H be an infinite dimensional separable complex Hilbert space and B(H) be the algebra of all bounded linear operators on H. T ∈ B(H) satisfies Weyl’s theorem if σ(T)\σω(T)=π00(T),  where σ(T) and σω(T) denote the spectrum and the Weyl spectrum of T respectively, π00(T)={λ ∈ isoσ(T): 0<dim N(T-λI)<∞}. If σ(T)\σω(T)   π00(T),  T is called satisfying Browder’s theorem. In this paper, using the property of generalized Kato decomposition, we explore the relation between the single-valued extension property and Weyl’s theorem under small compact perturbations.