[ 1 ] OUDGHIRI M. Weyl’s and Browder’s theorems for operators satisfying the SVEP [J]. Studia Mathematica, 2004,163(1): 85-101.
[ 2 ] WEYL H V. Uber beschrankte quadratische Formen, deren Differenz vollstetig ist [J]. Rend Circ Math Palermo,1909, 27(1): 373-392.
[ 3 ] HARTE R, LEE W Y. Another note on Weyl’s theorem [J]. Transactions of the American Mathematical Society,1997, 349(5): 2115-2124.
[ 4 ] RAKOCEVIC V. On a class of operators [J]. Mat Vesnik, 1985, 37(4): 423-426.
[ 5 ] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators [J]. Mathematische Annalen,1966, 163: 18-49.
[ 6 ] AIENA P. Fredholm and Local Spectral Theory, with Applications to Multipliers [M]. Dordrecht: Kluwer Academic Publishers, 2004.
[ 7 ] XIAO N N, CAO X H. Generalized Kato decomposition and perturbations of the single-valued extension property [J]. Journal of Graduate University of Chinese Academy of Sciences, 2013, 30(2): 159-165.
[ 8 ] JI Y Q. Quasitriangular + small compact = strongly irreducible [J]. Transactions of the American Mathematical Society, 1999, 351(11): 4657-4673.
[ 9 ] HERRERO D A. Economical compact perturbations, II: Filling in the holes [J]. J Operator Theory, 1988, 19(1): 25-42.
[10] HERRERO D A. Approximation of Hilbert Space Operators: Vol 1 [M]. 2nd ed. Harlow: Longman Scientific and Technical, 1989.
[11] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators [J]. Mathematische Annalen, 1966, 163: 18-49.
[12] SHI W J, CAO X H. Weyl’s theorem for the square of operator and perturbations [J]. Communications in Contemporary Mathematics, 2015, 17(5): 36-46.
[13] LI C G, ZHU S, FENG Y L. Weyl’s theorem for functions of operators and approximation [J]. Integral Equations & Operator Theory, 2010, 67(4): 481-497. |