华东师范大学学报(自然科学版) ›› 2018, Vol. 2018 ›› Issue (1): 24-34,49.doi: 10.3969/j.issn.1000-5641.2018.01.004

• 数学 • 上一篇    下一篇

一般时间终端一致连续多维BSDE解的稳定性

董勇鹏, 王茜茹, 马娇娇   

  1. 中国矿业大学 数学学院, 江苏 徐州 221116
  • 收稿日期:2017-01-09 出版日期:2018-01-25 发布日期:2018-01-11
  • 作者简介:董勇鹏,男,硕士研究生,研究方向为倒向随机微分方程.E-mail:yong_p_dong@163.com.
  • 基金资助:
    国家自然科学基金(11371362)

A stability theorem for solutions of general time interval multidimensional BSDEs with uniformly continuous generators

DONG Yong-peng, WANG Qian-ru, MA Jiao-jiao   

  1. School of Mathematics, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
  • Received:2017-01-09 Online:2018-01-25 Published:2018-01-11

摘要: 在生成元g关于y满足对t不一致的Osgood条件,关于z满足对t不一致的一致连续条件且g的第i个分量仅仅依赖于(wty)及矩阵z的第i行的条件下,范胜君等在2015年证明了一般时间终端多维倒向随机微分方程(简称BSDE)解的存在性和唯一性.在此基础上,本文利用一致连续函数可用Lipschitz函数一致逼近的性质、迭代技术、Girsanov变换及Bihari不等式等工具,首次建立了上述条件下一般时间终端多维BSDE解的一个稳定性定理.

关键词: 多维倒向随机微分方程, 稳定性定理, 一致连续, 一般时间终端

Abstract: The existence and uniqueness of solutions for general time interval multi-dimensional backward stochastic differential equations (BSDEs) was proved in Fan et al. (2015) under assumptions that the generator g satisfies the Osgood condition in y and the uniformly continuous condition in z both non-uniformly with respect to t, and the i-th component gi of g depends only on(w, t, y) and the i-th row of the matrix z. In this paper, by virtue of a uniform approximation of uniformly continuous functions by a sequence of Lipschitz functions, the theorem of Girsanov, and the Bihari inequality, we establish, for the first time, a stability theorem for the solutions of the general time interval multidimensional BSDEs with uniformly continuous generators.

Key words: multidimensional backward stochastic differential equation, stability theorem, uniformly continuous condition, general time interval

中图分类号: