[1] NIKAIDO T, SHIMADA K, SHIBATA M, et al. Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus[J]. Clinical and Experimental Immunology, 1990, 79(2):209-214.
[2] RECHSTEINER M, REALINI C, USTRELL V. The proteasome activator 11S REG (PA28) and class I antigen presentation[J]. The Biochemical Journal, 2000, 345(1):1-15.
[3] MAO I, LIU J, LI X, et al. REGgamma, a proteasome activator and beyond?[J]. Cellular and Molecular Life Sciences:CMLS, 2008, 65(24):3971-3980.
[4] LI X, LONARD D M, JUNG S Y, et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin-and ATPindependent manner by the REGgamma proteasome[J]. Cell, 2006, 124(2):381-392.
[5] GOLDBERG A L. Protein degradation and protection against misfolded or damaged proteins[J]. Nature, 2003, 426(6968):895-899.
[6] JUNG T, CATALGOL B, GRUNE T. The proteasomal system[J]. Molecular Aspects of Medicine, 2009, 30(4):191-196.
[7] GERMAIN D. Ubiquitin-dependent and -independent mitochondrial protein quality controls:Implications in ageing and neurodegenerative diseases[J]. Molecular Microbiology, 2008, 70(6):1334-1341.
[8] VOGES D, ZWICKL P, BAUMEISTER W. The 26S proteasome:A molecular machine designed for controlled proteolysis[J]. Annual Review of Biochemistry, 1999, 68:1015-1068.
[9] WILK S, CHEN W E, MAGNUSSON R P. Properties of the nuclear proteasome activator PA28gamma (REGgamma)[J]. Archives of Biochemistry and Biophysics, 2000, 383(2):265-271.
[10] MURATA S, KAWAHARA H, TOHMA S, et al. Growth retardation in mice lacking the proteasome activator PA28gamma[J]. The Journal of Biological Chemistry, 1999, 274(53):38211-38215.
[11] BARTON L F, RUNNELS H A, SCHELL T D, et al. Immune defects in 28-kDa proteasome activator gammadeficient mice[J]. Journal of Immunology, 2004, 172(6):3948-3954.
[12] YU G, ZHAO Y, HE J, et al. Comparative analysis of REGgamma expression in mouse and human tissues[J]. Journal of Molecular Cell Biology, 2010, 2(4):192-198.
[13] HE J, CUI L, ZENG Y, et al. REGgamma is associated with multiple oncogenic pathways in human cancers[J]. BMC Cancer, 2012(12):75.
[14] WANG X, TU S, TAN J, et al. REGgamma:A potential marker in breast cancer and effect on cell cycle and proliferation of breast cancer cell[J]. Medical Oncology, 2011, 28(1):31-41.
[15] CHAI F, LIANG Y, BI J, et al. High expression of REGgamma is associated with metastasis and poor prognosis of patients with breast cancer[J]. International Journal of Clinical and Experimental Pathology, 2014, 7(11):7834-7843.
[16] TIAN M, XIAOYI W, XIAOTAO L, et al. Proteasomes reactivator REGgamma enchances oncogenicity of MDAMB-231 cell line via promoting cell proliferation and inhibiting apoptosis[J]. Cellular and Molecular Biology, 2009, 55(Suppl):OL1121-1131.
[17] ZHANG M, GAN L, REN G S. REGgamma is a strong candidate for the regulation of cell cycle, proliferation and the invasion by poorly differentiated thyroid carcinoma cells[J]. Brazilian Journal of Medical and Biological Research, 2012, 45(5):459-465.
[18] GUO J, HAO J, JIANG H, et al. Proteasome activator subunit 3 promotes pancreatic cancer growth via c-Mycglycolysis signaling axis[J]. Cancer Letters, 2017, 386:161-167.
[19] KONDO M, MORⅡSHI K, WADA H, et al. Upregulation of nuclear PA28gamma expression in cirrhosis and hepatocellular carcinoma[J]. Experimental and Therapeutic Medicine, 2012, 3(3):379-385.
[20] LI L P, CHENG W B, LI H, et al. Expression of proteasome activator REGgamma in human laryngeal carcinoma and associations with tumor suppressor proteins[J]. Asian Pacific Journal of Cancer Prevention:APJCP, 2012, 13(6):2699-2703.
[21] LI J, FENG X, SUN C, et al. Associations between proteasomal activator PA28gamma and outcome of oral squamous cell carcinoma:Evidence from cohort studies and functional analyses[J]. EBioMedicine, 2015, 2(8):851-858.
[22] LIAO L, KUANG S Q, YUAN Y, et al. Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2002, 83(1-5):3-14.
[23] YAN J, TSAI S Y, TSAI M J. SRC-3/AIB1:Transcriptional coactivator in oncogenesis[J]. Acta Pharmacologica Sinica, 2006, 27(4):387-394.
[24] HUANG H, WENG H, ZHOU H, et al. Attacking c-Myc:Targeted and combined therapies for cancer[J]. Current Pharmaceutical Design, 2014, 20(42):6543-6554.
[25] LI S, JIANG C, PAN J, et al. Regulation of c-Myc protein stability by proteasome activator REGgamma[J]. Cell Death and Differentiation, 2015, 22(6):1000-1011.
[26] ZHAN T, RINDTORFF N, BOUTROS M. Wnt signaling in cancer[J]. Oncogene, 2017, 36(11):1461-1473.
[27] STEWART D J. Wnt signaling pathway in non-small cell lung cancer[J]. Journal of The National Cancer Institute, 2014, 106(1):djt356.
[28] SAWA M, MASUDA M, YAMADA T. Targeting the Wnt signaling pathway in colorectal cancer[J]. Expert Opinion on Therapeutic Targets, 2016, 20(4):419-429.
[29] XU Q, KRAUSE M, SAMOYLENKO A, et al. Wnt signaling in renal cell carcinoma[J]. Cancers, 2016, 8(6):57.
[30] LUO J. Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy[J]. Cancer Letters, 2009, 273(2):194-200.
[31] LI L, DANG Y, ZHANG J, et al. REGgamma is critical for skin carcinogenesis by modulating the Wnt/betacatenin pathway[J]. Nature Communications, 2015(6):6875.
[32] STRACQUADANIO G, WANG X, WALLACE M D, et al. The importance of p53 pathway genetics in inherited and somatic cancer genomes[J]. Nature Reviews Cancer, 2016, 16(4):251-265.
[33] ZHANG Z, ZHANG R. Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation[J]. The EMBO Journal, 2008, 27(6):852-864.
[34] LIU J, YU G, ZHAO Y, et al. REGgamma modulates p53 activity by regulating its cellular localization[J]. Journal of Cell Science, 2010, 123(23):4076-4084.
[35] WEINBERG W C, DENNING M F. P21Waf1 control of epithelial cell cycle and cell fate[J]. Critical Reviews in Oral Biology and Medicine:An Official Publication of the American Association of Oral Biologists, 2002, 13(6):453-464.
[36] LI X, AMAZIT L, LONG W, et al. Ubiquitin-and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway[J]. Molecular Cell, 2007, 26(6):831-842.
[37] KOBAYASHI T, WANG J, AL-AHMADIE H, et al. ARF regulates the stability of p16 protein via REGgammadependent proteasome degradation[J]. Molecular Cancer Research:MCR, 2013, 11(8):828-833.
[38] CHEN X, BARTON L F, CHI Y, et al. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome[J]. Molecular Cell, 2007, 26(6):843-852.
[39] ZHU H, KAVSAK P, ABDOLLAH S, et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation[J]. Nature, 1999, 400(6745):687-693.
[40] KWON A, LEE H L, WOO K M, et al. SMURF1 plays a role in EGF-induced breast cancer cell migration and invasion[J]. Molecules and Cells, 2013, 36(6):548-555.
[41] KWEI K A, SHAIN A H, BAIR R, et al. SMURF1 amplification promotes invasiveness in pancreatic cancer[J]. PloS One, 2011, 6(8):e23924.
[42] WANG W, REN F, WU Q, et al. MicroRNA-497 inhibition of ovarian cancer cell migration and invasion through targeting of SMAD specific E3 ubiquitin protein ligase 1[J]. Biochemical and Biophysical Research Communications, 2014, 449(4):432-437.
[43] LIU S, LAI L, ZUO Q, et al. PKA turnover by the REGgamma-proteasome modulates FoxO1 cellular activity and VEGF-induced angiogenesis[J]. Journal of Molecular and Cellular Cardiology, 2014, 72:28-38.
[44] LI L, ZHAO D, WEI H, et al. REGgamma deficiency promotes premature aging via the casein kinase 1 pathway[J]. Proceedings of The National Academy of Sciences of The United States of America, 2013, 110(27):11005-11010.
[45] SCHITTEK B, SINNBERG T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis[J]. Molecular Cancer, 2014, 13:231.
[46] DONG S, JIA C, ZHANG S, et al. The REGgamma proteasome regulates hepatic lipid metabolism through inhibition of autophagy[J]. Cell Metabolism, 2013, 18(3):380-391.
[47] LIN L, BAEHRECKE E H. Autophagy, cell death, and cancer[J]. Molecular & Cellular Oncology, 2015, 2(3):e985913.
[48] XU J, ZHOU L, JI L, et al. The REGgamma-proteasome forms a regulatory circuit with IkappaBvarepsilon and NFkappaB in experimental colitis[J]. Nature Communications, 2016(7):10761.
[49] KANAI K, ARAMATA S, KATAKAMI S, et al. Proteasome activator PA28 gamma stimulates degradation of GSK3-phosphorylated insulin transcription activator MAFA[J]. Journal of Molecular Endocrinology, 2011, 47(1):119-127.
[50] MORⅡSHI K, OKABAYASHI T, NAKAI K, et al. Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein[J]. Journal of Virology, 2003, 77(19):10237-10249. |