[1] 连展, 魏泽勋, 王永刚, 等. 中国近海环流数值模拟研究综述[J]. 海洋科学进展, 2009(2): 250-265. DOI: 10.3969/j.issn.1671-6647.2009.02.016 [2] MOLL A, RADACH G. Review of three-dimensional ecological modelling related to the North Sea shelf system[J]. Progress in Oceanography, 2003, 57(2): 175-217. DOI: 10.1016/S0079-6611(03)00067-3. [3] 曲大鹏. POM海洋数值模式及对渤、黄、东海潮汐潮流模拟试验的初步分析[D]. 山东 青岛: 国家海洋局第一海洋研究所, 2008. [4] 王彪, 朱建荣. 基于FVCOM模型的珠江河口及其邻近海域的潮汐模拟[J]. 热带海洋学报, 2012(4): 17-27 [5] LIM H, KIM C S, PARK K, et al. Down-scaled regional ocean modeling system (ROMS) for high-resolution coastal hydrodynamics in Korea[J]. Acta Oceanologica Sinica, 2013, 32(9): 50-61. DOI: 10.1007/s13131-013-0352-y. [6] 储鏖. Delft3D在天文潮与风暴潮耦合数值模拟中的应用[J]. 海洋预报, 2004(3): 29-36. DOI: 10.3969/j.issn.1003-0239.2004.03.005 [7] PEÑA M A, MASSON D, CALLENDAR W. Annual plankton dynamics in a coupled physical-biological model of the Strait of Georgia, British Columbia[J]. Progress in Oceanography, 2016, 146: 58-74. DOI: 10.1016/j.pocean.2016.06.002. [8] 杨金湘, 王佳. 台湾海峡冬、夏季氮通量的数值模拟研究[J]. 海洋学报, 2018(4): 30-40 [9] LIU G, CHAI F. Seasonal and interannual variability of primary and export production in the South China Sea: A three-dimensional physical - biogeochemical model study[J]. Ices Journal of Marineence, 2009, 2(66): 420-431. [10] 郭琳. 加利福尼亚流系物理-生态过程的时空演变特征及其动力学机制研究[D]. 山东 青岛: 中国海洋大学, 2015. [11] 张璇, 江毓武. 珠江口夏季底层缺氧现象的数值模拟[J]. 厦门大学学报(自然科学版), 2011(6): 1042-1046 [12] 寿玮玮. 大气沉降对渤海营养盐的贡献及生态效应[D]. 上海: 华东师范大学, 2018. [13] FENG T, WANG C, HOU J, et al. Effect of inter-basin water transfer on water quality in an urban lake: A combined water quality index algorithm and biophysical modelling approach[J]. Ecological Indicators, 2018, 92: 61-71. DOI: 10.1016/j.ecolind.2017.06.044. [14] CHEN C, BEARDSLRY R C, COWLES G. An unstructured grid, Finite-Volume Community Ocean Model: FVCOM user manual[R]. SMAST/UMASSD-13-0701, 2013. [15] BUTENSCHÖN M, CLARK J. ERSEM 15.06: A generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels[J]. Geoscientific Model Development, 2015(8): 7063-7187. [16] BRUGGEMAN J, BOLDING K. A general framework for aquatic biogeochemical models[J]. Environmental Modelling & Software, 2014, 61: 249-265. DOI: 10.1016/j.envsoft.2014.04.002. [17] 郑沛楠, 宋军, 张芳苒, 等. 常用海洋数值模式简介[J]. 海洋预报, 2008(4): 108-120. DOI: 10.3969/j.issn.1003-0239.2008.04.016 [18] XIE Y, TILSTONE G H, WIDDICOMBE C, et al. Effect of increases in temperature and nutrients on phytoplankton community structure and photosynthesis in the western English Channel[J]. Marine Ecology Progress Series, 2015, 519: 61-73. DOI: 10.3354/meps11101. [19] CHEN C, LIU H, BEARDSLEY R C. An unstructured grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1): 159-186. DOI: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2. [20] 宋洪军, 季如宝, 王宗灵. 近海浮游植物水华动力学和生物气候学研究综述[J]. 地球科学进展, 2011(3): 257-265 [21] CORNES R C, JONES P D. An examination of storm activity in the northeast Atlantic region over the 1851-2003 period using the EMULATE gridded MSLP data series[J]. Journal of Geophysical Research, 2011, 116(D16). DOI: 10.1029/2011JD016007. [22] FINDLAY H S, YOOL A, NODALE M, et al. Modelling of autumn plankton bloom dynamics[J]. Journal of Plankton Research, 2006, 28(2): 209-220. DOI: 10.1093/plankt/fbi114. [23] EDWARDS M, RICHARDSON A J. Impact of climate change on marine pelagic phenology and trophic mismatch[J]. Nature (London), 2004, 430(7002): 881-884. DOI: 10.1038/nature02808. [24] 杜胜蓝, 黄岁樑, 臧常娟, 等. 浮游植物现存量表征指标间相关性研究Ⅰ: 叶绿素a与生物量[J]. 水资源与水工程学报, 2011(1): 40-44 [25] 杜胜蓝, 黄岁樑, 臧常娟, 等. 浮游植物现存量表征指标间相关性研究Ⅱ: 叶绿素a与藻密度[J]. 水资源与水工程学报, 2011(2): 44-49 [26] GE J, CHEN C, QI J, et al. A dike-groyne algorithm in a terrain-following coordinate ocean model (FVCOM): Development, validation and application[J]. Ocean Modelling, 2012, 47: 26-40. DOI: 10.1016/j.ocemod.2012.01.006. [27] 陶英佳. 长江口盐水入侵自动化预报系统的设计与检验[D]. 上海: 华东师范大学, 2015. [28] LEE K, TONG L T, MILLERO F J, et al. Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans[J]. Geophysical Research Letters, 2006, 33(19): L19605. DOI: 10.1029/2006GL027207. [29] SOKOLETSKY L, YANG X, SHEN F. MODIS-based retrieval of suspended sediment concentration and diffuse attenuation coefficient in Chinese estuarine and coastal waters[C]//Ocean Remote Sensing & Monitoring from Space. International Society for Optics and Photonics, 2014. [30] LAMQUIN N, MAZERAN C, DOXARAN D, et al. Assessment of GOCI radiometric products using MERIS, MODIS and field measurements[J]. Ocean Science Journal, 2012, 47(3): 287-311. DOI: 10.1007/s12601-012-0029-z. [31] XING X, ZHAO D, LIU Y, et al. An overview of remote sensing of chlorophyll fluorescence[J]. Ocean Science Journal, 2007, 42(1): 49-59. DOI: 10.1007/BF03020910. [32] WANG K S, CHENG H, DONG L X. A hydrographic comparison of the two sides of the Changjiang plume front[C]//Proceedings of International Symposium on Biochemical Study of the Changjiang Estuary and its Adjacent Coastal Waters of the East China Sea. Beijing: China Ocean Press, 1990:62-75. [33] 胡方西, 胡辉, 谷国传. 长江口锋面研究[M]. 上海: 华东师范大学出版社, 2002. [34] 闫庆. 长江口外锋区浮游植物生物量及其影响因子的观测与数值模拟[D]. 上海: 上海海洋大学, 2016. [35] TIAN R C, HU F X, MARTIN J M. Summer nutrient fronts in the Changjiang (Yantze River) estuary[J]. Estuarine, Coastal and Shelf Science, 1993, 37(1): 27-41. DOI: 10.1006/ecss.1993.1039. [36] 沈志良. 长江口海区理化环境对初级生产力的影响[J]. 海洋湖沼通报, 1993(1): 47-51 [37] 周淑青, 沈志良, 李峥, 等. 长江口最大浑浊带及邻近水域营养盐的分布特征[J]. 海洋科学, 2007, 31(6): 34-42. DOI: 10.3969/j.issn.1000-3096.2007.06.008 [38] 杨波. 三峡工程对长江口羽状锋区生物地球化学特征的影响[D]. 山东 青岛: 国家海洋局第一海洋研究所, 2012. [39] 张传松. 长江口及邻近海域赤潮生消过程特征及其营养盐效应分析[D]. 山东 青岛: 中国海洋大学, 2008. |