华东师范大学学报(自然科学版) ›› 2021, Vol. 2021 ›› Issue (5): 115-133.doi: 10.3969/j.issn.1000-5641.2021.05.011
收稿日期:
2021-08-03
出版日期:
2021-09-25
发布日期:
2021-09-28
通讯作者:
倪葎
E-mail:lni@dase.ecnu.edu.cn
Mengchen YANG, Xudong CHEN, Peng CAI, Lyu NI*()
Received:
2021-08-03
Online:
2021-09-25
Published:
2021-09-28
Contact:
Lyu NI
E-mail:lni@dase.ecnu.edu.cn
摘要:
传感器技术的普及使得时间序列数据受到人们越来越多的关注. 早期时间序列分类(Early Time Series Classification, ETSC)希望通过观测尽可能短的时序数据而对其做出尽可能准确的分类, 已在科技金融领域发挥着重要的作用. 首先概述了常见的时间序列分类器, 并综述了基于最小预测长度、基于最大区分子序列和基于模型的3类早期时间序列分类框架的最新研究进展. 然后在每类方法中, 分析了具有代表性的早期时间序列分类模型的关键技术及其优缺点; 整理了科技金融领域的公开数据集和常见的评价指标. 最后对未来的发展趋势做了展望.
中图分类号:
杨梦晨, 陈旭栋, 蔡鹏, 倪葎. 早期时间序列分类方法研究综述[J]. 华东师范大学学报(自然科学版), 2021, 2021(5): 115-133.
Mengchen YANG, Xudong CHEN, Peng CAI, Lyu NI. Survey of early time series classification methods[J]. Journal of East China Normal University(Natural Science), 2021, 2021(5): 115-133.
表2
基于MPL的分类时间点确定方法"
方法简称 | 序列类型 | 分类器/模型 | 考虑权衡 | 早期性策略 |
1-NN-Early, ECTS | UTS | k-NN | RNNS, 聚簇算法 | |
Relaxed ECTS | UTS | k-NN | RNNS, 聚簇算法 | |
MTSECP | MTS | k-NN | RNNS, 聚簇算法 | |
ECDIRE | UTS | GP | 准确度阈值 | |
Game Theory | UTS | GP | 准确度阈值 | |
Gupta-2019[ | MTS | GP | 准确度阈值 | |
Gupta-2020[ | MTS | GP | 考虑 | |
FECM | MTS | GP | 考虑 | 效应函数 |
SCR, GSDT | UTS | 决策树 | 特征枚举树 |
表4
基于模型的分类时间点确定方法"
方法简称 | 序列类型 | 分类器/模型 | 考虑权衡 | 早期性策略 |
EarlyOpt[ | UTS | SVM | 考虑 | 构造停止规则和代价函数 |
CE[ | UTS/MTS | SVM | 集成策略 | |
Fore Front Nose[ | UTS/MTS | SVM | 集成策略 | |
TEASER[ | UTS | SVM | 集成策略 | |
iHMM[ | UTS | HMM | 缩减状态变量个数 | |
CBR[ | UTS | k-NN | ||
Dachraoui-2015[ | UTS | 贝叶斯决策 | 考虑 | “未来决策”观点 |
NoCluster, 2Step[ | MTS | 贝叶斯决策 | “未来决策”观点 | |
Ru?wurm-2019[ | UTS/MTS | LSTM+CNN | 考虑 | 注意力机制 |
MDDNN[ | UTS/MTS | LSTM+CNN | 考虑 | 注意力机制 |
Early Classifier Agent[ | UTS | DQN | 考虑 | 奖励函数 |
1 |
KAO L J, CHIU C C, LU C J, et al. A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting. Decision Support Systems, 2013, 54 (3): 1228- 1244.
doi: 10.1016/j.dss.2012.11.012 |
2 |
LEUNG M T, DAOUK H, CHEN A S, et al. Forecasting stock indices: A comparison of classification and level estimation models. International Journal of Forecasting, 2000, 16 (2): 173- 190.
doi: 10.1016/S0169-2070(99)00048-5 |
3 | MORI U, MENDIBURU A, MIRANDA I M, et al. Early classification of time series using multi-objective optimization techniques. Information Sciences, 2019, 492 (3): 204- 218. |
4 | 马超红, 翁小清. 时间序列早期分类综述. 微型机与应用, 2016, 35 (16): 13- 15. |
5 | SANTOS T, KERN R. A literature survey of early time series classification and deep learning [C/OL]// SamI40 Workshop at i-KNOW’16. [2021-07-02]. http://ceur-ws.org/Vol-1793/paper4.pdf. |
6 |
GUPTA A, GUPTA H P, BISWAS B, et al. Approaches and applications of early classification of time series: A review. IEEE Transactions on Artificial Intelligence, 2020, 1 (1): 47- 61.
doi: 10.1109/TAI.2020.3027279 |
7 | ABANDA A, MORI U, LOZANO J A. A review on distance based time series classification. Data Mining and Knowledge Discovery, 2018, 33, 378- 412. |
8 | WEI L, KEOGH E. Semi-supervised time series classication [C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2006: 748-753. |
9 | 原继东, 王志海, 孙艳歌, 等. 面向复杂时间序列的k近邻分类器 . 软件学报, 2017, 28 (11): 3002- 3017. |
10 |
JEONG Y S, JEONG M K, OMITAOMU O A. Weighted dynamic time warping for time series classification. Pattern Recognition, 2011, 44 (9): 2231- 2240.
doi: 10.1016/j.patcog.2010.09.022 |
11 | BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series [C]// Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. AAAI, 1994: 359-370. |
12 | CHEN Y P, KEOGH E, HU B, et al. The UCR time series classication archive[EB/OL].(2015-07-15)[2021-07-21]. https://www.cs.ucr.edu/~eamonn/time_series_data/. |
13 |
LINES J, BAGNALL A. Time series classification with ensembles of elastic distance measures. Data Mining and Knowledge Discovery, 2015, 29 (3): 565- 592.
doi: 10.1007/s10618-014-0361-2 |
14 | XI X P, KEOGH E, SHELTON C, et al. Fast time series classification using numerosity reduction [C]// Proceedings of the 23rd International Conference on Machine Learning. 2006: 1033–1040. |
15 | ESLING P, AGON C. Time-series data mining. ACM Computing Surveys, 2012, 45 (1): 1- 34. |
16 |
XING Z Z, PEI J, KEOGH E. A brief survey on sequence classification. ACM SIGKDD Explorations Newsletter, 2010, 12 (1): 40- 48.
doi: 10.1145/1882471.1882478 |
17 |
WANG X Y, MUEEN A, DING H, et al. Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 2013, 26 (2): 275- 309.
doi: 10.1007/s10618-012-0250-5 |
18 | CHEN Y P, HU B, KEOGH E, et al. DTW-D: Time series semi-supervised learning from a single example [C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2013: 383–391. |
19 |
DING H, TRAJCEVSKI G, SCHEUERMANN P, et al. Querying and mining of time series data: Experimental comparison of representations and distance measures. VLDB Endowment, 2008, 1 (2): 1542- 1552.
doi: 10.14778/1454159.1454226 |
20 |
胡蓉. 多输出支持向量回归及其在股指预测中的应用. 计算机技术与发展, 2007, (10): 226- 229.
doi: 10.3969/j.issn.1673-629X.2007.10.065 |
21 | 张倩倩, 林天华, 祁旭阳, 等. 基于机器学习的股票预测研究综述. 河北省科学院学报, 2020, 37 (4): 15- 21. |
22 | TAY F E H, CAO L J. Modified support vector machines in financial time series forecasting. Neurocomputing, 2002, 48 (1/2/3/4): 847- 861. |
23 | 李翔宇, 李瑞兴, 曾燕清. 基于改进核函数的支持向量机时间序列数据分类. 信阳农林学院学报, 2021, 31 (1): 121- 126. |
24 | JALALIAN A, CHALUP S K. GDTW-P-SVMs: Variable-length time series analysis using support vector machines. Neurocomputing, 2013, 99 (1): 270- 282. |
25 | KATE R J. Using dynamic time warping distances as features for improved time series classification. Data Mining and Knowledge Discovery, 2015, 30 (2): 283- 312. |
26 | PANIGRAHI S S, MANTRI J K. A text based Decision Tree model for stock market forecasting [C]// Proceedings of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). 2015: 405–411. |
27 | YAMADA Y, SUZUKI E, YOKOI H, et al. Decision-tree induction from time-series data based on a standard-example split test [C]// Proceedings of the 20th International Conference on International Conference on Machine Learning. 2003: 840–847. |
28 |
DOUZAL A, AMBLARD C. Classification trees for time series. Pattern Recognition, 2012, 45 (3): 1076- 1091.
doi: 10.1016/j.patcog.2011.08.018 |
29 | 施沫寒, 王志海. 一种基于时间序列特征的可解释步态识别方法. 中国科学: 信息科学, 2020, 50 (3): 438- 460. |
30 |
徐雷, WEBB G I, PETITJEAN F, 等. 基于动态集成决策树的多类别时间序列分类模型. 计算机应用研究, 2018, 35 (6): 1712- 1715.
doi: 10.3969/j.issn.1001-3695.2018.06.024 |
31 |
王燕, 郭元凯. 改进的XGBoost模型在股票预测中的应用. 计算机工程与应用, 2019, 55 (20): 202- 207.
doi: 10.3778/j.issn.1002-8331.1904-0007 |
32 | ANDERSSON J O. The new foundations of evolution: on the tree of life. Systematic Biology, 2010, 60 (1): 114- 115. |
33 |
HENDRIK J, MURPHY M, ONSLOW T. Classification trees as a tool for operational avalanche forecasting on the Seward Highway, Alaska. Cold Regions Science and Technology, 2014, 97, 113- 120.
doi: 10.1016/j.coldregions.2013.08.009 |
34 | LIU G, WANG X J, LI R F. Multi-scale RCNN model for financial time-series classication[EB/OL]. (2019-11-21)[2021-07-02]. https://arxiv.org/pdf/1911.09359.pdf. |
35 | SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. 2014: 3104–3112. |
36 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015: 1–9. DOI: 10.1109/CVPR.2015.7298594. |
37 | CUI Z C, CHEN W L, CHEN Y X. Multi-scale convolutional neural networks for time series classification[EB/OL]. (2016-03-22)[2021-07-02]. https://arxiv.org/pdf/1603.06995v4.pdf. |
38 |
ZȨBIK M, KORYTKOWSKI M, ANGRYK R, et al. Convolutional neural networks for time series classification. Journal of Systems Engineering and Electronics, 2017, 28 (1): 162- 169.
doi: 10.21629/JSEE.2017.01.18 |
39 | WANG Z G, YAN W Z, OATES T. Time series classification from scratch with deep neural networks: A strong baseline[C]// 2017 International Joint Conference on Neural Networks (IJCNN) . IEEE, 2017: 1578-1585. |
40 | ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: The missing ingredient for fast stylization [EB/OL]. (2016-07-27)[2021-07-02]. https://arxiv.org/pdf/1607.08022v3.pdf. |
41 |
MEHDIYEV N, LAHANN J, EMRICH A, et al. Time series classification using deep learning for process planning: A case from the process industry. Procedia Computer Science, 2017, 114, 242- 249.
doi: 10.1016/j.procs.2017.09.066 |
42 | MALHOTRA P, TV V, VIG L, et al. TimeNet: Pre-trained deep recurrent neural network for time series classification [C]// 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. 2018: 607–612. |
43 | RAJAN D, THIAGARAJAN J. A generative modeling approach to limited channel ECG classification [C]// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018: 2571-2574. |
44 | 包振山, 郭俊南, 谢源, 等. 基于LSTMG-GA的股票价格涨跌预测模型. 计算机科学, 2020, 47 (1): 467- 473. |
45 |
GUPTA A, GUPTA H P, BISWAS B, et al. An early classification approach for multivariate time series of on-vehicle sensors in transportation. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (12): 5316- 5327.
doi: 10.1109/TITS.2019.2957325 |
46 |
XING Z Z, PEI J, PHILIP S Y. Early classification on time series. Knowledge and Information Systems, 2012, 31 (1): 105- 127.
doi: 10.1007/s10115-011-0400-x |
47 | ANTONUCCI A, SCANAGATTA M, MAUA D D, et al. Early classification of time series by hidden Markov models with set-valued parameters [C]// Proceedings of the NIPS Time Series Workshop. 2015: pp 1-5. |
48 | XING Z Z, PEI J, DONG G Z, et al. Mining sequence classifiers for early prediction [C]// SIAM International Conference on Data Mining. 2008: 644–655. |
49 | XING Z Z, PEI J, YU P S. Early prediction on time series: A nearest neighbor approach [C]// Proceedings of the 21st International Jont Conference on Artifical Intelligence. 2009: 1297-1302. |
50 | MA C H, WENG X Q, SHAN Z N. Early classification of multivariate time series based on piecewise aggregate approximation [C]// International Conference on Health Information Science, HIS 2017, Lecture Notes in Computer Science, vol 10594. Cham: Springer, 2017: 81–88. |
51 |
MORI U, MENDIBURU A, KEOGH E, et al. Reliable early classification of time series based on discriminating the classes over time. Data Mining and Knowledge Discovery, 2017, 31 (1): 233- 263.
doi: 10.1007/s10618-016-0462-1 |
52 | GUPTA A, PAL R, MISHRA R, et al. Game theory based early classification of rivers using time series data [C]// 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). IEEE, 2019: 686–691. |
53 | GUPTA A, GUPTA H P, DUTTA T. Early classification approach for multivariate time series using sensors of different sampling rate [C]// 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). IEEE, 2019: 1–2. DOI: 10.1109/SAHCN.2019.8824960. |
54 | GUPTA A, GUPTA H P, BISWAS B, et al. A divide-and conquer–based early classification approach for multivariate time series with different sampling rate components in IoT [J]. ACM Transactions on Internet of Things, 2020, 1(2): 1–21. |
55 | GUPTA A, GUPTA H P, BISWAS B, et al. A fault-tolerant early classification approach for human activities using multivariate time series. A fault-tolerant early classification approach for human activities using multivariate time series, 2021, 20 (5): 1747- 1760. |
56 | LI S, LI K, FU Y. Early recognition of 3D human actions. ACM Transactions on Multimedia Computing, Communications, and Applications, 2018, 14 (1): 1- 20. |
57 | XING Z Z, PEI J, YU P S, et al. Extracting interpretable features for early classification on time series [C]// Proceedings of the 2011 SIAM International Conference on Data Mining (SDM). SIAM, 2011: 247–258. |
58 | GHALWASH M F, RADOSAVLJEVIC V, OBRADOVIC Z. Utilizing temporal patterns for estimating uncertainty in interpretable early decision making [C]//Proc SIGKDD, 2014: 402–411. |
59 | LIN Y F, CHEN H H, TSENG V S, et al. Reliable early classification on multivariate time series with numerical and categorical attributes [C]// Advances in Knowledge Discovery and Data Mining, PAKDD 2015, Lecture Notes in Computer Science, vol 9077. Cham: Springer, 2015: 199–211. |
60 | GHALWASH M F, OBRADOVIC Z. Early classification of multivariate temporal observations by extraction of interpretable shapelets [J]. BMC Bioinformatics, 2012, 13: Article number 195. |
61 | HE G L, DUAN Y, QIAN T Y, et al. Early prediction on imbalanced multivariate time series [C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. ACM, 2013: 1889–1892. |
62 | GHALWASH M F, RADOSAVLJEVIC V, OBRADOVIC Z. Extraction of interpretable multivariate patterns for early diagnostics [C]// 2013 IEEE 13th International Conference on Data Mining. IEEE, 2013: 201–210. |
63 | ZHAO L, LIANG H Y, YU D M, et al. Asynchronous multivariate time series early prediction for ICU transfer [C]// Proceedings of the 2019 International Conference on Intelligent Medicine and Health. ACM, 2019: 17–22. |
64 | HE G L, ZHAO W, XIA X W. Confidence-based early classification of multivariate time series with multiple interpretable rules [J]. Pattern Analysis and Applications, 2020, 23: 567–580. |
65 | HE G L, DUAN Y, ZHOU G F, et al. Early classification on multivariate time series with core features [C]// Database and Expert Systems Applications, DEXA 2014, Lecture Notes in Computer Science, vol 8644. Cham: Springer, 2014: 410–422. |
66 | NG A Y, JORDAN M I. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes [C]// NIPS, 2002: 841–848. |
67 | CHENG W H, ERFANI S M, ZHANG R, et al. Predicting complex activities from ongoing multivariate time series [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. ACM, 2018: 3322–3328. |
68 | LI K, LI S, FU Y. Early classification of ongoing observation [C]// 2014 IEEE International Conference on Data Mining. IEEE, 2014: 310–319. |
69 | MORI U, MENDIBURU A, DASGUPTA S, et al. Early classification of time series by simultaneously optimizing the accuracy and earliness [J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(10): 4569–4578. |
70 | MORI U, MENDIBURU A, DASGUPTA S, et al. Early classification of time series from a cost minimization point of view [C]// Proceedings of the NIPS Time Series Workshop. 2015: 1-5. |
71 | DACHRAOUI A, BONDU A, CORNU´EJOLS A. Early classification of time series as a non myopic sequential decision making problem [C]// Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, Lecture Notes in Computer Science, vol 9284. Cham: Springer, 2015: 433–447. |
72 | TAVENARD R, MALINOWSKI S. Cost-aware early classification of time series [C]// Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, Lecture Notes in Computer Science, vol 9851. Cham: Springer, 2016: 632–647. |
73 | ANDO S, SUZUKI E. Minimizing response time in time series classification [J]. Knowledge and Information Systems, 2016, 46(2): 449–476. |
74 | GONZALEZ C J A, DIEZ J J R. Boosting interval-based literals: Variable length and early classification [C]// Series in Machine Perception and Artificial Intelligence: Volume 83, Data Mining in Time Series and Streaming Databases. Singapore: World Scientific Publishing Co Pte Ltd, 2004: 149–171. |
75 | HATAMI N, CHIRA C. Classifiers with a reject option for early time-series classification[C]//2013 IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL). IEEE, 2013: 9–16. |
76 | SCHÄFER P, LESER U. Teaser: Early and accurate time series classification [J]. Data Mining and Knowledge Discovery, 2020, 34: 1336–1362. |
77 | BREGON A, SIMON M A, RODRIGUEZ J J, et al. Early fault classification in dynamic systems using case-based reasoning [C]// Current Topics in Artificial Intelligence, CAEPIA 2005, Lecture Notes in Computer Science, vol 4177. Berlin: Springer, 2006: 211–220. |
78 | MARTINEZ C, PERRIN G, RAMASSO E, et al. A deep reinforcement learning approach for early classification of time series [C]// 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018: 2030–2034. |
79 | HUANG H S, LIU C L, TSENG V S. Multivariate time series early classification using multi-domain deep neural network [C]// 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2018: 90–98. |
80 | RUßWURM M, LEFEVRE S,COURTY N, et al. End-to-end learning for early classification of time series [EB/OL]. (2019-01-30)[2021-07-02]. https://arxiv.org/pdf/1901.10681.pdf. |
81 | Kaggle Datssets [EB/OL]. [2021-07-02]. https://www.kaggle.com/datasets. |
82 | GHALWASH M F, RAMLJAK D, OBRADOVIC Z. Early classification of multivariate time series using a hybrid hmm/svm model [C]// 2012 IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 2012: 1–6. DOI: 10.1109/BIBM.2012.6392654. |
[1] | 余阳, 胡卉芪, 周煊. 基于非易失性内存的LSM-tree存储系统优化[J]. 华东师范大学学报(自然科学版), 2021, 2021(5): 37-47. |
[2] | 肖垚, 毕军芳, 韩易, 董启文. 在线广告中点击率预测研究[J]. 华东师范大学学报(自然科学版), 2017, 2017(5): 80-86,100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||