1 |
FLEMING W H, SONER H M. Controlled Markov Processes and Viscosity Solutions [M]. New York: Springer, 2006.
|
2 |
CRANDALL M G, EVANS L C, LIONS P L. Some properties of viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society, 1984, 282 (2): 487- 502.
doi: 10.1090/S0002-9947-1984-0732102-X
|
3 |
MATHER J N. Variational construction of orbits of twist diffeomorphisms. Journal of the American Mathematical Society, 1991, 4 (2): 207- 263.
doi: 10.1090/S0894-0347-1991-1080112-5
|
4 |
MATHER J N. Variational construction of connecting orbits. Annales Institut Fourier, 1993, 43 (5): 1349- 1386.
doi: 10.5802/aif.1377
|
5 |
FATHI A, MADERNA E. Weak kam theorem on non compact manifolds [J]. Nonlinear Differential Equations and Applications NoDEA, 2007, 14: 1-27.
|
6 |
NAMAH G, ROQUEJOFFRE J M. Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations. Communications in Partial Differential Equations, 1999, 24 (5/6): 883- 893.
|
7 |
FATHI A. Sur la convergence du semi-groupe de Lax-Oleinik. Comptes Rendus de I’Académie des Sciences-Series I: Mathematics, 1998, 327 (3): 267- 270.
|
8 |
DAVINI A, SICONOLFI A. A generalized dynamical approach to the large time behaviour of solutions of Hamilton-Jacobi equations. Siam Journal on Mathematical Analysis, 2006, 38 (2): 478- 502.
doi: 10.1137/050621955
|
9 |
ROQUEJOFFRE J M. Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations. Journal de Mathématiques Pures et Appliquées, 2001, 80, 85- 104.
doi: 10.1016/S0021-7824(00)01183-1
|
10 |
BRAVETTI A, CRUZ H, TAPIAS D. Contact Hamiltonian mechanics. Annals of Physics, 2017, 376, 17- 39.
doi: 10.1016/j.aop.2016.11.003
|
11 |
MARÒ S, SORRENTINO A. Aubry-Mather theory for conformally symplectic systems. Communications in Mathematical Physics, 2017, 354 (2): 775- 808.
doi: 10.1007/s00220-017-2900-3
|
12 |
RAJEEV S G. A Hamilton-Jacobi formalism for thermodynamics. Annals of Physics, 2008, 323 (9): 2265- 2285.
doi: 10.1016/j.aop.2007.12.007
|
13 |
GRMELA M, OTTINGER H C. Dynamics and thermodynamics of complex fluids (I): Development of a general formalism. Physical Review E, 1997, 56 (6): 6620- 6632.
doi: 10.1103/PhysRevE.56.6620
|
14 |
BRAVETTI A, TAPIAS D. Thermostat algorithm for generating target ensembles. Physical Review E, 2016, 022139.
|
15 |
WANG K Z, WANG L, YAN J. Implicit variational principle for contact Hamiltonian systems. Nonlinearity, 2017, 30 (2): 492- 515.
doi: 10.1088/1361-6544/30/2/492
|
16 |
WANG K Z, WANG L, YAN J. Variational principle for contact Hamiltonian systems and its applications. Journal de Mathématiques Pures et Appliquées, 2019, 123, 167- 200.
doi: 10.1016/j.matpur.2018.08.011
|
17 |
WANG K Z, WANG L, YAN J. Aubry-Mather theory for contact Hamiltonian systems. Communications in Mathematical Physics, 2019, 366 (3): 981- 1023.
doi: 10.1007/s00220-019-03362-2
|
18 |
CANNARSA P, CHENG W, JIN L, et al. Herglotz’ variational principle and Lax-Oleinik evolution. Journal de Mathématiques Pures et Appliquées, 2020, 141, 99- 136.
doi: 10.1016/j.matpur.2020.07.002
|