1 |
VANCE B. Join-order optimization with cartesian products [D]. Beaverton: Oregon Graduate Institute of Science and Technology, 1998.
|
2 |
IBARAKI T, KAMEDA T. On the optimal nesting order for computing N-relational joins . ACM Transactions on Database Systems, 1984, 9 (3): 482- 502.
|
3 |
NEUMANN T. Query simplification: Graceful degradation for join-order optimization [C]// Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. 2009: 403-414.
|
4 |
IOANNIDIS Y E, KANG Y C. Left-deep vs. bushy trees: An analysis of strategy spaces and its implications for query optimization [C]// Proceedings of the 1991 ACM SIGMOD International Conference on Management of Data. 1991: 168-177.
|
5 |
SELINGER P G, ASTRAHAN M M, CHAMBERLIN D D, et al. Access path selection in a relational database management system [M]// Readings in Artificial Intelligence and Databases. San Francisco: Morgan Kaufmann, 1989: 511-522.
|
6 |
CHANDE S V, SINHA M. Genetic optimization for the join ordering problem of database queries [C]// 2011 Annual IEEE India Conference. IEEE, 2011: 12506652.
|
7 |
FEGARAS L. A new heuristic for optimizing large queries [C]// International Conference on Database and Expert Systems Applications. 1998: 726-735.
|
8 |
WAAS F, PELLENKOFT A. Join order selection (good enough is easy) [C]// British National Conference on Databases. 2000: 51-67.
|
9 |
LANG H, NEUMANN T, KEMPER A, et al. Performance-optimal filtering: Bloom overtakes cuckoo at high throughput. Proceedings of the VLDB Endowment, 2019, 12 (5): 502- 515.
|
10 |
MARCUS R, PAPAEMMANOUIL O. Deep reinforcement learning for join order enumeration [C]// Proceedings of the First International Workshop on Exploiting Artificial Intelligence Techniques for Data Management. 2018: 3.
|
11 |
KRISHNAN S, YANG Z H, GOLDBERG K, et al. Learning to optimize join queries with deep reinforcement learning [EB/OL]. (2019-01-10)[2022-07-01]. https://arxiv.org/pdf/1808.03196.pdf.
|
12 |
TRUMMER I, WANG J X, WEI Z Y, et al. SkinnerDB: Regret-bounded query evaluation via reinforcement learning. ACM Transactions on Database Systems, 2021, 46 (3): 9.
|
13 |
YU X, LI G L, CHAI C L, et al. Reinforcement learning with Tree-LSTM for join order selection [C]// 2020 IEEE 36th International Conference on Data Engineering. IEEE, 2020: 1297-1308.
|
14 |
WANG X Y, QU C B, WU W Y, et al. Are we ready for learned cardinality estimation?. Proceedings of the VLDB Endowment, 2021, 14 (9): 1640- 1654.
|
15 |
O’NEIL P, O’NEIL B, CHEN X D. Star schema benchmark revision 3 [EB/OL]. (2009-06-05)[2022-07-05]. https://www.cs.umb.edu/~poneil/StarSchemaB.PDF.
|
16 |
Transaction Processing Performance Council. TPC benchmarkTM H [EB/OL]. (2017-09-21)[2022-07-03]. https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.1.pdf.
|
17 |
NAMBIAR R O, POESS M. The making of TPC-DS [C]// Proceedings of the VLDB Endowment. 2006: 1049-1058.
|
18 |
LEIS V, GUBICHEV A, MIRCHEV A, et al. How good are query optimizers, really?. Proceedings of the VLDB Endowment, 2015, 9 (3): 204- 215.
|
19 |
KIPF A, KIPF T, RADKE B, et al. Learned cardinalities: Estimating correlated joins with deep learning [EB/OL]. (2018-12-18) [2022-07-03]. https://arxiv.org/pdf/1809.00677.pdf.
|
20 |
YANG Z H, KAMSETTY A, LUAN S F, et al. NeuroCard: One cardinality estimator for all tables. Proceedings of the VLDB Endowment, 2021, 14 (1): 61- 73.
|
21 |
ZHU R, WU Z N, HAN Y X, et al. FLAT: Fast, lightweight and accurate method for cardinality estimation. Proceedings of the VLDB Endowment, 2021, 14 (9): 1489- 1502.
|
22 |
HAN Y X, WU Z N, WU P Z, et al. Cardinality estimation in DBMS: A comprehensive benchmark evaluation [EB/OL]. (2021-09-15)[2022-07-01]. https://arxiv.org/pdf/2109.05877.pdf.
|
23 |
NEGI P, MARCUS R, KIPF A, et al. Flow-Loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, 2021, 14 (11): 2019- 2032.
|
24 |
GU Z X, SOLIMAN M A, WAAS F M. Testing the accuracy of query optimizers [C]// Proceedings of the Fifth International Workshop on Testing Database Systems. 2012: 11.
|
25 |
QIN Y, SALEM K, GOEL A K. Towards adaptive costing of database access methods [C]// 2007 IEEE 23rd International Conference on Data Engineering Workshop. 2007: 469-477.
|
26 |
LI Z, PAPAEMMANOUIL O, CHERNIACK M. OptMark: A toolkit for benchmarking query optimizers [C]// Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. 2016: 2155-2160.
|
27 |
MI K M, ZHANG C X, QIAN W N, et al. Artemis: An automatic test suite generator for large scale OLAP database [C]// International Symposium on Benchmarking, Measuring and Optimization. 2020: 74-89.
|
28 |
项兆坤, 陈婷, 苏仟, 等. 面向 OLAP 数据库查询处理功能的模糊测试工具. 华东师范大学学报 (自然科学版), 2021, (5): 74- 83.
|
29 |
SINGH A S, MASUKU M B. Sampling techniques & determination of sample size in applied statistics research: An overview [EB/OL]. (2014-11-15) [2022-06-27]. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.678.1300&rep=rep1&type=pdf.
|