1 |
SONG R B, ZHU W L, FU J J, et al. Electrode materials engineering in electrocatalytic CO2 reduction: Energy input and conversion efficiency . Advanced Materials, 2020, 32 (27): 1903796- 1903820.
|
2 |
ZHANG L, ZHAO Z J, GONG J L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms . Angewandte Chemie-International Edition, 2017, 56 (38): 11326- 11353.
|
3 |
WANG Y F, HAN P, LYU X M, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction . Joule, 2018, 2 (12): 2551- 2582.
|
4 |
ZHANG W J, HU Y, MA L B, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals . Advanced Science, 2018, 5 (1): 1700275- 1700298.
|
5 |
PEI Y H, ZHONG H, JIN F M. A brief review of electrocatalytic reduction of CO2—Materials, reaction conditions, and devices . Energy Science & Engineering, 2021, 9 (7): 1012- 1032.
|
6 |
YE W X, GUO X L, MA T L, et al. A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products . Chemical Engineering Journal, 2021, 414, 128825- 128840.
|
7 |
CHOU T C, CHANG C C, YU H L, et al. Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene . Journal of the American Chemical Society, 2020, 142 (6): 2857- 2867.
|
8 |
LYU Z H, ZHU S Q, XIE M H, et al. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction . Angewandte Chemie-International Edition, 2021, 60 (4): 1909- 1915.
|
9 |
TAN Z T, PENG T P, TAN X J, et al. Controllable synthesis of leaf-like CuO nanosheets for selective CO2 electroreduction to ethylene . ChemElectroChem, 2020, 7 (9): 2020- 2025.
|
10 |
LUO H Q, LI B, MA J G, et al. Surface modification of nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas . Angewandte Chemie-International Edition, 2022, 61 (11): e202116736.
|
11 |
KEERTHIGA G, CHETTY R. Electrochemical reduction of CO2 on flame annealed Cu . ChemistrySelect, 2021, 6 (12): 2887- 2892.
|
12 |
HORI Y, TAKAHASHI I, KOGA O, et al. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes . The Journal of Physical Chemistry B, 2002, 106 (1): 15- 17.
|
13 |
JIAO J Q, LIN R, LIU S J, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11 (3): 222- 228.
|
14 |
ZHAO K, LIU Y M, QUAN X, et al. CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework . ACS Applied Materials & Interfaces, 2017, 9 (6): 5302- 5311.
|
15 |
GUAN A X, CHEN Z, QUAN Y L, et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites . ACS Energy Letters, 2020, 5 (4): 1044- 1053.
|
16 |
ZHU Q G, YANG D X, LIU H Z, et al. Hollow metal–organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction . Angewandte Chemie-International Edition, 2020, 59 (23): 8896- 8901.
|
17 |
YANG D X, ZHU Q G, SUN X F, et al. Electrosynthesis of a defective indium selenide with 3D structure on a substrate for tunable CO2 electroreduction to syngas . Angewandte Chemie-International Edition, 2020, 59 (6): 2354- 2359.
|
18 |
ZHU Q G, SUN X F, YANG D X, et al. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex . Nature Communications, 2019, 10 (1): 3851- 3861.
|
19 |
HOANG T T H, MA S C, GOLD J I, et al. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis . ACS Catalysis, 2017, 7 (5): 3313- 3321.
|
20 |
LIU J, FU J J, ZHOU Y, et al. Controlled synthesis of EDTA-modified porous hollow copper microspheres for high-efficiency conversion of CO2 to multicarbon products . Nano Letters, 2020, 20 (7): 4823- 4828.
|
21 |
HAN Z S, HAN D L, CHEN Z, et al. Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction . Nature Communications, 2022, 13, 3158- 3167.
|
22 |
HENTRICH D, TAUER K, ESPANOL M, et al. EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution. Biomimetics, 2017, 2 (4): 24- 45.
|
23 |
FENG R T, ZHU Q G, CHU M E, et al. Electrodeposited Cu-Pd bimetallic catalysts for the selective electroreduction of CO2 to ethylene . Green Chemistry, 2020, 22, 7560- 7565.
|
24 |
JIA S Q, ZHU Q G, CHU M E, et al. Hierarchical metal-polymer hybrids for enhanced CO2 electroreduction . Angewandte Chemie-International Edition, 2021, 60 (19): 10977- 10982.
|
25 |
JUNG H, LEE S Y, LEE C W, et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction . Journal of the American Chemical Society, 2019, 141 (11): 4624- 4633.
|
26 |
SRIVASTAVA V, LIU W, JANKE E M, et al. Understanding and curing structural defects in colloidal GaAs nanocrystals. Nano Letters, 2017, 17 (3): 2094- 2101.
|
27 |
CHEN C J, YAN X P, WU Y H, et al. Boosting the productivity of electrochemical CO2 reduction to multi-carbon products by enhancing CO2 diffusion through a porous organic cage . Angewandte Chemie-International Edition, 2022, 61 (23): e202202607.
|
28 |
LI P S, BI J H, LIU J Y, et al. In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts . Nature Communications, 2022, 13, 1965- 1973.
|
29 |
CHU S L, LI X, ALEX W R, et al. Electrocatalytic CO2 reduction to ethylene over CeO2-supported Cu nanoparticles: Effect of exposed facets of CeO2. Chinese Journal of Catalysis, 2021, 37 (5): 2009023.
|
30 |
JIANG Y Q, CHANGHYEOK C, HONG S, et al. Enhanced electrochemical CO2 reduction to ethylene over CuO by synergistically tuning oxygen vacancies and metal doping . Cell Reports Physical Science, 2021, 2 (3): 100356.
|
31 |
GENG Z G, KONG X D, CHEN W W, et al. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO . Angewandte Chemie-International Edition, 2018, 57 (21): 6054- 6059.
|
32 |
JIA S Q, ZHU Q G, WU H H, et al. Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper-antimony bimetallic alloy catalyst. Chinese Journal of Catalysis, 2020, 41, 1091- 1098.
|