1 |
HE M Y, SUN Y H, HAN B X. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angewandte Chemie-International Edition, 2022, 61 (15): e202112835.
|
2 |
LIANG H Q, BEWERIES T, FRANCKE R, et al. Molecular catalysts for the reductive homocoupling of CO2 towards C2+ compounds . Angewandte Chemie-International Edition, 2022, 61 (19): e202200723.
|
3 |
XU S Z, CARTER E A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction . Chemical Reviews, 2019, 119, 6631- 6669.
|
4 |
LEE S, KIM D, LEE J. Electrocatalytic oroduction of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cucatalyst . Angewandte Chemie-International Edition, 2015, 54 (49): 14701- 14705.
|
5 |
ANG N W J, OLIVEIRA J C A, ACKERMANN L. Electroreductive cobalt-catalyzed carboxylation: Cross-electrophile electrocoupling with atmospheric CO2. Angewandte Chemie-International Edition, 2020, 59 (31): 12842- 12847.
|
6 |
LAN Y C, WANG H, WU L X, et al. Electroreduction of dibromobenzenes on silver electrode in the presence of CO2. Journal of Electroanalytical Chemistry, 2012, 664, 33- 38.
|
7 |
MENA S, SANTIAGO S, GALLARDO I, et al. Sustainable and efficient electrosynthesis of naproxen using carbon dioxide and ionic liquids. Chemosphere, 2020, 245, 125557.
|
8 |
YANG H P, WU L X, WANG H, et al. Cathode made of compacted silver nanoparticles for electrocatalytic carboxylation of 1-phenethyl bromide with CO2. Chinese Journal of Catalysis, 2016, 37, 994- 998.
|
9 |
YANG D T, ZHU M H, SCHIFFER Z J, et al. Direct electrochemical carboxylation of benzylic C–N bonds with carbon dioxide. ACS Catalysis, 2019, 9 (5): 4699- 4705.
|
10 |
SENBOKU H, SAKAI K, FUKUI A, et al. Efficient synthesis of mandel acetates by electrochemical carboxylation of benzal diacetates. ChemElectroChem, 2019, 6 (16): 4158- 4164.
|
11 |
ZHONG J S, YANG Z X, DING C L, et al. Desulfonylative electrocarboxylation with carbon dioxide. The Journal of Organic Chemistry, 2021, 86, 16162- 16170.
|
12 |
QUAN Y L, YU R H, ZHU J X, et al. Efficient carboxylation of styrene and carbon dioxide by single-atomic copper electrocatalyst. Journal of Colloid and Interface Science, 2021, 601, 378- 384.
|
13 |
ALKAYAL A, TABAS V, MONTANARO S, et al. Harnessing applied potential: Delective β-hydrocarboxylation of substituted olefins. Journal of the American Chemical Society, 2020, 142, 1780- 1785.
|
14 |
KIM Y, PARK G D, BALAMURUGAN M, et al. Electrochemical β-selective hydrocarboxylation of styrene using CO2 and water . Advanced Science, 2020, 7 (3): 1900137.
|
15 |
GHOBADI K, ZARE H R, KHOSHRO H, et al. Electrosynthesis of cinnamic acid by electrocatalytic carboxylation of phenylacetylene in the presence of [NiⅡ(Me4-NO2Bzo[15]tetraeneN4)] complex: An EC′ CCC′ C mechanism. Comptes Rendus Chimie, 2018, 21, 14- 18.
|
16 |
LI C H, YUAN G Q, JIANG H F. Electrocarboxylation of alkynes with carbon dioxide in the presence of metal salt catalysts. Chinese Journal of Chemistry, 2010, 28, 1685- 1689.
|
17 |
STALCUP M A, NILLES C K, LEE H J, et al. Organic electrosynthesis in CO2-eXpanded electrolytes: Enabling selective acetophenone carboxylation to atrolatic acid . ACS Sustainable Chemistry & Engineering, 2021, 9 (31): 10431- 10436.
|
18 |
SENBOKU H, YAMAUCHI Y, FUKUHARA T, et al. Electrochemical carboxylation of aliphatic ketones: Synthesis of beta-keto carboxylic acids. Electrochemistry, 2006, 74, 612- 614.
|
19 |
WANG H, ZHU H W, GUO R R, et al. Computational and experimental study on electrocarboxylation of benzalacetone. Asian Journal of Organic Chemistry, 2017, 6 (10): 1380- 1384.
|
20 |
QU Y, TSUNEISHI C, TATENO H, et al. Green synthesis of α-amino acids by electrochemical carboxylation of imines in a flow microreactor. Reaction Chemistry & Engineering, 2017, 2 (6): 871- 875.
|
21 |
WU L X, YANG H P, GUAN Y B, et al. Electrosynthesis of cyclic carbonates from CO2 and epoxides on compacted silver nanoparticles electrode . International Journal of Electrochemical Science, 2017, 12 (10): 8963- 8972.
|
22 |
WANG H, WU L X, ZHAO J Q, et al. Synthesis of cyclic carbonates from CO2 and diols via electrogenerated cyanomethyl anion . Greenhous Gases-Science and Technology, 2012, 2 (1): 59- 65.
|
23 |
LEE K M, JANG J H, BALAMURUGAN M, et al. Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate . Nature Energy, 2021, 6, 733- 741.
|
24 |
FORTE G, CHIAROTTO I, RICHTER F, et al. Towards a sustainable electrochemical activation for recycling CO2: Synthesis of bis-O-alkylcarbamates from aliphatic and benzyl diamines . Reaction Chemistry & Engineering, 2017, 2 (5): 646- 649.
|
25 |
TASCEDDA P, DUNACH E. Electrosynthesis of cyclic carbamates from aziridines and carbon dioxide [J]. Chemical Communications, 2000(6): 449-450.
|
26 |
ORSINI M, FEROCI M, SOTGIU G, et al. Stereoselective electrochemical carboxylation: 2-phenylsuccinates from chiral cinnamic acid derivatives. Organic & Biomolecular Chemistry, 2005, 3 (7): 1202- 1208.
|
27 |
FEROCI M, INESI A, ORSINI M, et al. Electrochemical carboxylation of N-(2-bromopropionyl)-4R-phenyloxazolidin-2-one: An efficient route to unsymmetrical methylmalonic ester derivatives. Organic Letters, 2002, 4 (16): 2617- 2620.
|
28 |
CHEN B L, TU Z Y, ZHU H W, et al. CO2 as a C1-organic building block: Enantioselective electrocarboxylation of aromatic ketones with CO2 catalyzed by cinchona alkaloids under mild conditions . Electrochimica Acta, 2014, 116, 475- 483.
|
29 |
CHEN B L, ZHU H W, XIAO Y, et al. Asymmetric electrocarboxylation of 1-phenylethyl chloride catalyzed by electrogenerated chiral [COI(salen)]- complex. Electrochemistry Communications, 2014, 42, 55- 59.
|
30 |
JIAO K J, LI Z M, XU X T, et al. Palladium-catalyzed reductive electrocarboxylation of allyl esters with carbon dioxide. Organic Chemistry Frontiers, 2018, 5 (14): 2244- 2248.
|
31 |
YANG H P, YUE Y N, SUN Q L, et al. Entrapment of a chiral cobalt complex within silver: A novel heterogeneous catalyst for asymmetric carboxylation of benzyl bromides with CO2. Chemical Communications, 2015, 51, 12216- 12219.
|
32 |
YANG H P, CHI D H, SUN Q L, et al. Entrapment of alkaloids within silver: From enantioselective hydrogenation to chiral recognition. Chemical Communications, 2014, 50, 8868- 8870.
|
33 |
YANG H P, FEN Q, WANG H, et al. Copper encapsulated alkaloids composite: An effective heterogeneous catalyst for electrocatalytic asymmetric hydrogenation. Electrochemistry Communications, 2016, 71, 38- 42.
|
34 |
YANG L R, ZHANG J J, ZHAO Y J, et al. La1−xSrxFeO3perovskite electrocatalysts for asymmetric electrocarboxylation of acetophenone with CO2. Electrochimica Acta, 2021, 398, 139308.
|
35 |
YANG L R, ZHAO Y J, JIANG C J, et al. Perovskite La0.7Sr0.3Fe0.8B0.2O3 (B = Ti, Mn, Co, Ni, and Cu) as heterogeneous electrocatalysts for asymmetric electrocarboxylation of aromatic ketones . Jouranl Catalysis, 2021, 401, 224- 233.
|
36 |
ZHAO Y J, YANG L R, WANG L T, et al. Asymmetric electrocarboxylation of 4′ -methylacetophenone over PrCoO3 perovskites . Catalysis Science & Technology, 2022, 12 (9): 2887- 2893.
|
37 |
LIAO L L, WANG Z H, CAO K G, et al. Electrochemical ring-opening dicarboxylation of strained carbon–carbon single bonds with CO2: Facile synthesis of diacids and derivatization into polyesters . Journal of the American Chemical Society, 2022, 144, 2062- 2068.
|
38 |
SUN X F, ZHU Q G, HU J Y, et al. N,N-Dimethylation of nitrobenzenes with CO2 and water by electrocatalysis . Chemical Science, 2017, 8 (8): 5669- 5674.
|
39 |
ROONEY C L, WU Y S, TAO Z X, et al. Electrochemical eeductive N-methylation with CO2 enabled by a molecular catalyst . Journal of the American Chemical Society, 2021, 143, 19983- 19991.
|
40 |
SENBOKU H, NAGAKURA K, FUKUHARA T, et al. Three-component coupling reaction of benzylic halides, carbon dioxide, and N, N-dimethylformamide by using paired electrolysis: Sacrificial anode-free efficient electrochemical carboxylation of benzylic halides. Tetrahedron, 2015, 71, 3850- 3856.
|
41 |
GRINBERG V A, KOCH T A, MAZIN V M, et al. Electrocarboxylation of 1,4-dibromobut-2-ene in a CO2-DMF liquid mixture . Russian Chemical Bulletin, 1997, 46, 1560- 1564.
|
42 |
CORBIN N, YANG D T, LAZOUSKI N, et al. Suppressing carboxylate nucleophilicity with inorganic salts enables selective electrocarboxylation without sacrificial anodes. Chemical Science, 2021, (12): 12365- 12376.
|
43 |
MEDVEDEV J J, MEDVEDEVA X V, LI F, et al. Electrochemical CO2 fixation to α-methylbenzyl bromide in divided cells with nonsacrificial anodes and aqueous anolytes . ACS Sustainable Chemistry & Engineering, 2019, 7 (24): 19631- 19639.
|
44 |
SHETA A M, MASHALY M A, SAID S B, et al. Selective α,δ-hydrocarboxylation of conjugated dienes utilizing CO2 and electrosynthesis . Chemical Science, 2020, 11 (34): 9109- 9114.
|
45 |
MATTHESSEN R, FRANSAER J, BINNEMANS K, et al. Paired electrosynthesis of diacid and diol precursors using dienes and CO2 as the carbon source . ChemElectroChem, 2015, 2 (1): 73- 76.
|
46 |
MUCHEZ L, DE VOS D E, KIM M J. Sacrificial anode-free electrosynthesis of α-hydroxy acids via electrocatalytic coupling of carbon dioxide to aromatic alcohols. ACS Sustainable Chemistry & Engineering, 2019, 7 (19): 15860- 15864.
|