1 |
BAI Y, LUO Q, LIU J. Protein self-assembly: Via supramolecular strategies. Chemical Society Reviews, 2016, 45 (10): 2756- 2767.
|
2 |
LAMPEL A. Biology-inspired supramolecular peptide systems. Chem, 2020, 6 (6): 1222- 1236.
|
3 |
CHATTERJEE A, REJA A, PAL S, et al. Systems chemistry of peptide-assemblies for biochemical transformations. Chemical Society Reviews, 2022, 51 (8): 3047- 3070.
|
4 |
WANG Y, LOVRAK M, LIU Q, et al. Hierarchically compartmentalized supramolecular gels through multilevel self-sorting. Journal of the American Chemical Society, 2019, 141 (7): 2847- 2851.
|
5 |
VOORHAAR L, HOOGENBOOM R. Supramolecular polymer networks: Hydrogels and bulk materials. Chemical Society Reviews, 2016, 45 (15): 4013- 4031.
|
6 |
PRAMANIK P, RAY D, ASWAL V K, et al. Supramolecularly engineered amphiphilic macromolecules: Molecular interaction overrules packing parameters. Angewandte Chemie-International Edition, 2017, 56 (13): 3516- 3520.
|
7 |
THOTA B N S, URNER L H, HAAG R. Supramolecular architectures of dendritic amphiphiles in water. Chemical Reviews, 2016, 116 (4): 2079- 2102.
|
8 |
MARTÍNEZ Á, ORTIZ MELLET C, GARCÍA FERNÁNDEZ J M. Cyclodextrin-based multivalent glycodisplays: Covalent and supramolecular conjugates to assess carbohydrate–protein interactions. Chemical Society Reviews, 2013, 42 (11): 4746- 4773.
|
9 |
GAO R H, HUANG Y, CHEN K, et al. Cucurbit[n]uril/metal ion complex-based frameworks and their potential applications . Coordination Chemistry Reviews, 2021, 437, 213741.
|
10 |
LIU J, SHENG J, SHAO L, et al. Tetraphenylethylene-featured fluorescent supramolecular nanoparticles for intracellular trafficking of protein delivery and neuroprotection. Angewandte Chemie-International Edition, 2021, 60 (51): 26740- 26746.
|
11 |
SMITH B A H, BERTOZZI C R. The clinical impact of glycobiology: Targeting selectins, siglecs and mammalian glycans. Nature Reviews Drug Discovery, 2021, 20 (3): 217- 243.
|
12 |
PINHO S S, REIS C A. Glycosylation in cancer: Mechanisms and clinical implications. Nature Reviews Cancer, 2015, 15 (9): 540- 555.
|
13 |
SUN X, JAMES T D. Glucose sensing in supramolecular chemistry. Chemical Reviews, 2015, 115 (15): 8001- 8037.
|
14 |
MIURA Y, HOSHINO Y, SETO H. Glycopolymer nanobiotechnology. Chemical Reviews, 2016, 116 (4): 1673- 1692.
|
15 |
NAISMITH J H, FIELD R A. Structural basis of trimannoside recognition by concanavalin A. Journal of Biological Chemistry, 1996, 271 (2): 972- 976.
|
16 |
AHN G, BANIK S M, MILLER C L, et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nature Chemical Biology, 2021, 17 (9): 937- 946.
|
17 |
DAVIS A P. Biomimetic carbohydrate recognition. Chemical Society Reviews, 2020, 49 (9): 2531- 2545.
|
18 |
SU L, FENG Y, WEI K, et al. Carbohydrate-based macromolecular biomaterials. Chemical Reviews, 2021, 121 (18): 10950- 11029.
|
19 |
HE X P, TIAN H. Photoluminescence architectures for disease diagnosis: From graphene to thin-layer transition metal dichalcogenides and oxides. Small, 2016, 12 (2): 144- 160.
|
20 |
GUO Y, NEHLMEIER I, POOLE E, et al. Dissecting multivalent lectin–carbohydrate recognition using polyvalent multifunctional glycan-quantum dots. Journal of the American Chemical Society, 2017, 139 (34): 11833- 11844.
|
21 |
GONZÁLEZ-CUESTA M, ORTIZ MELLET C, GARCÍA FERNÁNDEZ J M. Carbohydrate supramolecular chemistry: Beyond the multivalent effect. Chemical Communications, 2020, 56 (39): 5207- 5222.
|
22 |
PERCEC V, LEOWANAWAT P, SUN H J, et al. Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. Journal of the American Chemical Society, 2013, 135 (24): 9055- 9077.
|
23 |
FOSTER J C, VARLAS S, COUTURAUD B, et al. Getting into shape: Reflections on a new generation of cylindrical nanostructures’ self-assembly using polymer building blocks. Journal of the American Chemical Society, 2019, 141 (7): 2742- 2753.
|
24 |
DELBIANCO M, BHARATE P, VARELA-ARAMBURU S, et al. Carbohydrates in supramolecular chemistry. Chemical Reviews, 2016, 116 (4): 1693- 1752.
|
25 |
GAO C, CHEN G. Exploring and controlling the polymorphism in supramolecular assemblies of carbohydrates and proteins. Accounts of Chemical Research, 2020, 53 (4): 740- 751.
|
26 |
COOK T R, ZHENG Y R, STANG P J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chemical Reviews, 2013, 113 (1): 734- 777.
|
27 |
CHAKRABARTY R, MUKHERJEE P S, STANG P J. Supramolecular coordination: Self-assembly of finite two- and three-dimensional ensembles. Chemical Reviews, 2011, 111 (11): 6810- 6918.
|
28 |
DENG C L, MURKLI S L, ISAACS L D. Supramolecular hosts as: In vivo sequestration agents for pharmaceuticals and toxins. Chemical Society Reviews, 2020, 49 (21): 7516- 7532.
|
29 |
SCHMIDT B V K J, BARNER-KOWOLLIK C. Dynamic macromolecular material design-The versatility of cyclodextrin-based host–guest chemistry. Angewandte Chemie-International Edition, 2017, 56 (29): 8350- 8369.
|
30 |
THOMAS B, YAN K C, HU X L, et al. Fluorescent glycoconjugates and their applications. Chemical Society Reviews, 2020, 49 (2): 593- 641.
|
31 |
JIAO J B, WANG G Z, HU X L, et al. Cyclodextrin-based peptide self-assemblies (spds) that enhance peptide-based fluorescence imaging and antimicrobial efficacy. Journal of the American Chemical Society, 2020, 142 (4): 1925- 1932.
|
32 |
HU X L, ZANG Y, LI J, et al. Targeted multimodal theranostics: Via biorecognition controlled aggregation of metallic nanoparticle composites. Chemical Science, 2016, 7 (7): 4004- 4008.
|
33 |
WANG H, LIU Y, XU C, et al. Supramolecular glyco-poly-cyclodextrin functionalized thin-layer manganese dioxide for targeted stimulus-responsive bioimaging. Chemical Communications, 2018, 54 (32): 4037- 4040.
|
34 |
SHULOV I, RODIK R V, ARNTZ Y, et al. Protein-sized bright fluorogenic nanoparticles based on cross-linked calixarene micelles with cyanine corona. Angewandte Chemie-International Edition, 2016, 55 (51): 15884- 15888.
|
35 |
LOU X, YANG Y. Pillar[n]arene-based supramolecular switches in solution and on surfaces . Advanced Materials, 2020, 32 (43): 2003263.
|
36 |
SONG N, KAKUTA T, YAMAGISHI T A, et al. Molecular-scale porous materials based on pillar[n]arenes . Chem, 2018, 4 (9): 2029- 2053.
|
37 |
FENG W, JIN M, YANG K, et al. Supramolecular delivery systems based on pillararenes. Chemical Communications, 2018, 54 (97): 13626- 13640.
|
38 |
YU G, MA Y, HAN C, YAO Y, et al. A sugar-functionalized amphiphilic pillar[5]arene: Synthesis, self-assembly in water, and application in bacterial cell agglutination. Journal of the American Chemical Society, 2013, 135 (28): 10310- 10313.
|
39 |
LIU X, SHAO W, ZHENG Y, et al. GSH-Responsive supramolecular nanoparticles constructed by β-D-galactose-modified pillar[5]arene and camptothecin prodrug for targeted anticancer drug delivery. Chemical Communications, 2017, 53 (61): 8596- 8599.
|
40 |
LI Q L, SUN Y, REN L, et al. Supramolecular nanosystem based on pillararene-capped cus nanoparticles for targeted chemo-photothermal therapy. ACS Applied Materials and Interfaces, 2018, 10 (35): 29314- 29324.
|
41 |
SREEDEVI P, NAIR J B, JOSEPH M M, et al. Dynamic self-assembly of mannosylated-calix[4]arene into micelles for the delivery of hydrophobic drugs. Journal of Controlled Release, 2021, 339, 284- 296.
|
42 |
BEATTY M A, HOF F. Host-guest binding in water, salty water, and biofluids: General lessons for synthetic, bio-targeted molecular recognition. Chemical Society Reviews, 2021, 50 (8): 4812- 4832.
|
43 |
KIM E, KIM D, JUNG H, et al. Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. Angewandte Chemie-International Edition, 2010, 49 (26): 4405- 4408.
|
44 |
GOMES L C, BENEDETTO G D, SCORRANO L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability [J]. Nature Cell Biology, 2011, 13(5): 589-598.
|
45 |
SUN C, WANG Z, YUE L, et al. Supramolecular induction of mitochondrial aggregation and fusion. Journal of the American Chemical Society, 2020, 142 (39): 16523- 16527.
|
46 |
ZHENG W, YANG G, SHAO N, et al. CO2 stimuli-responsive, injectable block copolymer hydrogels cross-linked by discrete organoplatinum(Ⅱ) metallacycles via stepwise post-assembly polymerization . Journal of the American Chemical Society, 2017, 139 (39): 13811- 13820.
|
47 |
DATTA S, SAHA M L, STANG P J. Hierarchical assemblies of supramolecular coordination complexes. Accounts of Chemical Research, 2018, 51 (9): 2047- 2063.
|
48 |
ZHU Y, ZHENG W, WANG W, et al. When polymerization meets coordination-driven self-assembly: Metallo-supramolecular polymers based on supramolecular coordination complexes. Chemical Society Reviews, 2021, 50 (13): 7395- 7417.
|
49 |
WANG W, WANG Y X, YANG H B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chemical Society Reviews, 2016, 45 (9): 2656- 2693.
|
50 |
ZHOU F, LI S, COOK T R, et al. Saccharide-functionalized organoplatinum(Ⅱ) metallacycles. Organometallics, 2014, 33 (24): 7019- 7022.
|
51 |
DATTA S, SAHA M L, LAHIRI N, et al. Hierarchical self-assembly of a water-soluble organoplatinum(Ⅱ) metallacycle into well-defined nanostructures. Organic Letters, 2018, 20 (22): 7020- 7023.
|
52 |
YANG G, ZHENG W, TAO G, et al. Diversiform and transformable glyco-nanostructures constructed from amphiphilic supramolecular metallocarbohydrates through hierarchical self-assembly: The balance between metallacycles and saccharides. ACS Nano, 2019, 13 (11): 13474- 13485.
|
53 |
JIANG H, ZHANG X, CHEN X, et al. Protein lipidation: Occurrence, mechanisms, biological functions, and enabling technologies. Chemical Reviews, 2018, 118 (3): 919- 988.
|
54 |
FLORES J, WHITE B M, BREA R J, et al. Lipids: Chemical tools for their synthesis, modification, and analysis. Chemical Society Reviews, 2020, 49 (14): 4602- 4614.
|
55 |
YANG L, WANG X, ZHOU C, et al. Some thoughts about controllable assembly (Ⅱ): Catassembly in living organism. Scientia Sinica Chimica, 2020, 50 (12): 1781- 1800.
|