华东师范大学学报(自然科学版) ›› 2023, Vol. 2023 ›› Issue (1): 60-72.doi: 10.3969/j.issn.1000-5641.2023.01.007
王蔓1, 党璐璐1, 袁慧霞1, 周静2,*(), 张大卫1,*(), 高国华1,*()
收稿日期:
2022-07-25
接受日期:
2022-09-30
出版日期:
2023-01-25
发布日期:
2023-01-07
通讯作者:
周静,张大卫,高国华
E-mail:qnsytaoer@163.com;dwzhang@chem.ecnu.edu.cn;ghgao@chem.ecnu.edu.cn
基金资助:
Man WANG1, Lulu DANG1, Huixia YUAN1, Jing ZHOU2,*(), Dawei ZHANG1,*(), Guohua GAO1,*()
Received:
2022-07-25
Accepted:
2022-09-30
Online:
2023-01-25
Published:
2023-01-07
Contact:
Jing ZHOU,Dawei ZHANG,Guohua GAO
E-mail:qnsytaoer@163.com;dwzhang@chem.ecnu.edu.cn;ghgao@chem.ecnu.edu.cn
摘要:
硫酸酯离子液体因其不含卤素离子, 具有极低的蒸气压、高的热稳定性、高黏度指数、低等温压缩系数、选择性溶解能力和良好的生物相容性等独特的性质而备受关注. 本文主要介绍了硫酸酯离子液体的合成方法, 包括一步法、两步法; 归纳了硫酸酯离子液体的结构, 特别是阴、阳离子烷基链长度等对其密度、黏度、折光率、表面张力、等温压缩系数以及其中的声音传导特性等物化性质的影响; 总结了硫酸酯离子液体在溶解、萃取、催化、润滑、气体吸附分离以及复合材料等不同领域的应用; 最后探讨了硫酸酯离子液体当前存在的问题并对其发展趋势进行了展望.
中图分类号:
王蔓, 党璐璐, 袁慧霞, 周静, 张大卫, 高国华. 硫酸酯离子液体的合成、物化性质及应用[J]. 华东师范大学学报(自然科学版), 2023, 2023(1): 60-72.
Man WANG, Lulu DANG, Huixia YUAN, Jing ZHOU, Dawei ZHANG, Guohua GAO. Synthesis, physicochemical properties, and applications of sulphate ionic liquids[J]. Journal of East China Normal University(Natural Science), 2023, 2023(1): 60-72.
1 | KARKHANIS D, FIELD L. Thiono compounds. 5. preparation and oxidation of some thiono derivatives of imidazoles. Phosphorus Sulfur, 1985, 22, 49- 57. |
2 | EßER J, WASSERSCHEID P, JESS A. Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chemistry, 2004, (7): 316- 322. |
3 | WANG B, QIN L, GAO G, et al. Are ionic liquids chemically stable?. Chemical Reviews, 2017, 117, 7113- 7131. |
4 | PEJAKOVIĆ V, IGARTUA A, KALIN M. Frictional behaviour of imidazolium sulfate ionic liquid additives under mixed slide to roll conditions: Part 2 - influence of concentration and chemical composition of ionic liquid additive. Lubrication Science, 2015, 27, 489- 503. |
5 | REGUEIRA T, LUGO L, FERNÁNDEZ J. Ionic liquids as hydraulic fluids: Comparison of several properties with those of conventional oils. Lubrication Science, 2014, 26, 488- 499. |
6 | MAURYA N, PARRAY Z A, MAURYA J K, et al. Ionic liquid green assembly-mediated migration of piperine from calf-thymus DNA: A new possibility of the tunable drug delivery system. ACS Omega, 2019, 4 (25): 21005- 21017. |
7 | SHEKAARI H, ZAFARANI-MOATTAR M T, MOKHTARPOUR M, et al. Compatibility of sustainable solvents ionic liquid, 1-ethyl-3-methylimidazolium ethyl sulfate in some choline chloride based deep eutectic solvents: Thermodynamics study. Journal of Chemical Thermodynamics, 2020, 141, 105961- 105972. |
8 | WASSERSCHEID P, GERHARD D, HIMMLER S, et al. New ionic liquids based on anion functionalization. ACS Symposium Series, 2007, 975, 258- 271. |
9 | HIMMLER S, HORMANN S, HAL R, et al. Transesterification of methylsulfate and ethylsulfate ionic liquids: An environmentally benign way to synthesize long-chain and functionalized alkylsulfate ionic liquids. Green Chemistry, 2006, 8 (10): 887- 894. |
10 | SANTOS C S, BALDELLI S. Alkyl chain interaction at the surface of room temperature ionic liquids: Systematic variation of alkyl chain length (R = C1-C4, C8) in both cation and anion of [R-OSO3] by sum frequency generation and surface tension . Journal of Chemical Physics B, 2009, 113, 923- 933. |
11 | TORRECILLA J S, PALOMAR J, GARCIA J, et al. Effect of cationic and anionic chain lengths on volumetric, transport, and surface properties of 1-alkyl-3-methylimidazolium alkylsulfate ionic liquids at (298.15 and 313.15) K. Journal of Chemical and Engineering Data, 2009, 54, 1297- 1301. |
12 | GACINO F M, REGUEIRA T, LUGO L, et al. Influence of molecular structure on densities and viscosities of several ionic liquids. Journal of Chemical and Engineering Data, 2011, 56, 4984- 4999. |
13 | GONZALEZ B, GOMEZ E, DOMINGUEZ A, et al. Physicochemical characterization of new sulfate ionic liquids. Journal of Chemical and Engineering Data, 2011, 56, 14- 20. |
14 | ALTUWAIM M S, ALKHALDI K H A E, AL-JIMAZ A S, et al. Temperature dependence of physicochemical properties of imidazolium-, pyroldinium-, and phosphonium-based ionic liquids. Journal of Chemical and Engineering Data, 2014, 59, 1955- 1963. |
15 | ZOREBSKI E, MUSIAL M, BAŁUSZYNSKA K, et al. Isobaric and isochoric heat capacities as well as isentropic and isothermal compressibilities of di- and trisubstituted imidazolium based ionic liquids as a function of temperature. Industrial & Engineering Chemistry Research, 2018, 57, 5161- 5172. |
16 | WU T Y, HAO L, CHEN P R, et al. Ionic conductivity and thermophysical properties of 1-butyl-1-methylpyrrolidinium butyl sulfate and its binary mixtures with poly(ethylene glycol) at various temperatures. International Journal of Electrochemical Science, 2013, 8 (4): 5067- 5085. |
17 | COSTA A J L, ESPERANCA J M S S, MARRUCHO I M, et al. Densities and viscosities of 1-ethyl-3-methylimidazolium n-alkyl sulfates. Journal of Chemical and Engineering Data, 2011, 56, 3433- 3441. |
18 | SINGH T, KUMAR A. Temperature dependence of physical properties of imidazolium based ionic liquids: internal pressure and molar refraction. Journal of Solution Chemistry, 2009, 38, 1043- 1053. |
19 | GÓMEZ E, CALVAR N, DOMÍNGUEZ A, et al. Synthesis and temperature dependence of physical properties of four pyridinium-based ionic liquids: Influence of the size of the cation. Journal of Chemical Thermodynamics, 2010, 42, 1324- 1329. |
20 | DZIDA M, MUSIA M, ZOREBSKI E, et al. Comparative study of the high pressure thermophysical properties of 1-ethyl-3-methylimidazolium and 1, 3-diethylimidazolium ethyl sulfates for use as sustainable and efficient hydraulic fluids. ACS Sustainable Chemistry & Engineering, 2018, 6 (8): 10934- 10943. |
21 | PU Y, JIANG N, RAGAUSKAS A J. Ionic liquid as a green solvent for lignin. Journal of Wood Chemistry and Technology, 2007, 27, 23- 33. |
22 | PRADO R, ERDOCIA X, LABIDI J. Study of the influence of reutilization ionic liquid on lignin extraction. Journal of Cleaner Production, 2016, 111, 125- 132. |
23 | KIM Y H, PARK S, KIM M H, et al. Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4] . Biomass Bioenergy, 2013, 56, 99- 103. |
24 | WARD V, PLECHKOVA N, SEDDON K R, et al. Disruption and wet extraction of the microalgae chlorella vulgaris using room-temperature ionic liquids. ACS Sustainable Chemistry & Engineering, 2016, 4 (2): 591- 600. |
25 | WARD V C A, MUNCH G, CICEK N, et al. Direct conversion of the oleaginous yeast rhodosporidium diobovatum to biodiesel using the ionic liquid [C2mim][EtSO4] . ACS Sustainable Chemistry & Engineering, 2017, 5 (6): 5562- 5570. |
26 | HADJ-KALI M K, ALNASHEF I M. Using ionic liquids for the separation of carbohydrates. International Journal of Chemical Engineering and Applications, 2015, 6 (6): 417- 421. |
27 | SHEKAARI H, ZAFARANI-MOATTAR M T, MOKHTARPOUR M, et al. Effect of 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid on the solubility of indomethacin in aqueous solutions at various temperatures. Journal of Molecular Liquids, 2018, 260, 166- 172. |
28 | RYU H J, SANCHEZ L, KEUL H A, et al. Imidazolium-based ionic liquids as efficient shape-regulating solvents for the synthesis of gold nanorods. Angewandte Chemie-International Edtion, 2008, 47, 7639- 7643. |
29 | BARZEGAR M, HABIBI-YANGJEH A, BEHBOUDNIA M. Template-free preparation and characterization of nanocrystalline ZnO in aqueous solution of [EtSO4] as a low-cost ionic liquid using ultrasonic irradiation and photocatalytic activity . Journal of Physics and Chemistry of Solids, 2009, 70, 1353- 1358. |
30 | TAGHVAEI V, HABIBI-YANGJEH A, BEHBOUDNIA M. Preparation and characterization of SnO2 nanoparticles in aqueous solution of [EtSO4] as a low cost ionic liquid using ultrasonic irradiation . Powder Technology, 2009, 195, 63- 67. |
31 | DAS L, GULERIA A, NEOGY S, et al. Porous nanostructures of SnSe: Role of ionic liquid, tuning of nanomorphology and mechanistic studies. RSC Advances, 2016, 6 (95): 92934- 92942. |
32 | ARCE A, RODRIGUEZ H, SOTO A. Use of a green and cheap ionic liquid to purify gasoline octane boosters. Green Chemistry, 2007, 9 (3): 247- 253. |
33 | OLIVEIRA F S, DOHRN R, PEREIRO A B, et al. Designing high ionicity ionic liquids based on 1-ethyl-3-methylimidazolium ethyl sulphate for effective azeotrope breaking. Fluid Phase Equilib, 2016, 419, 57- 66. |
34 | GÓMEZ E, DOMÍNGUEZ I, CALVAR N, et al. Separation of benzene from alkanes by solvent extraction with 1-ethylpyridinium ethylsulfate ionic liquid. Journal of Chemical Thermodynamics, 2010, 42, 1234- 1239. |
35 | MOCHIZUKI Y, SUGAWARA K. Removal of organic sulfur from hydrocarbon resources using ionic liquids. Energy Fuels, 2008, 22, 3303- 3307. |
36 | NEJAD N F, SOOLARI E S, ADIBI M, et al. Imidazolium-based alkylsulfate ionic liquids and removal of sulfur content from model of gasoline. Petroleum Science and Technology, 2013, 31, 472- 480. |
37 | XING P, ZHAO R, LI X, et al. Preparation of CoWO4/g-C3N4 and its ultra-deep desulfurization property . Australian Journal of Chemistry, 2017, 70, 271- 279. |
38 | SEFOKA R E, MULOPO J. Assessment of the desulfurization of FCC vacuum gasoil and light cycle oil using ionic liquid 1-butyl-3-methylimidazolium octylsulfate. International Journal of Industrial Chemistry, 2017, (8): 373- 381. |
39 | MANCUSO R, MANER A, ZICCARELLI I, et al. Auto-tandem catalysis in ionic liquids: Synthesis of 2-oxazolidinones by palladium-catalyzed oxidative carbonylation of propargylic amines in EmimEtSO4. Molecules, 2016, 21, 897- 904. |
40 | MANCUSO R, POMELLI C S, RAUT D S, et al. Copper-catalyzed recyclable synthesis of (Z)-3-Alkylideneisoindolinones by cycloisomerization of 2-Alkynylbenzamides in ionic liquids . Chemistry Select, 2017, 2 (3): 894- 899. |
41 | SANTAMARTA F, VERDIA P, TOJO E. A simple, efficient and green procedure for Knoevenagel reaction in [MMIm][MSO4] ionic liquid. Catalysis Communications, 2008, 9 (8): 1779- 1781. |
42 | VERDÍA P, SANTAMARTA F, TOJO E. Knoevenagel reaction in [MMIm][MSO4]: Synthesis of coumarins. Molecules, 2011, 16, 4379- 4388. |
43 | TASQEERUDDIN S, ASIRI Y I. An environmentally benign, green, and efficient ionic liquid catalyzed synthesis of Quinoline derivatives via Knoevenagel condensation. Journal of Heterocyclic Chemistry, 2020, 57, 132- 139. |
44 | SHARMA P, GUPTA M, GUPTA M, et al. One-pot synthesis of substituted piperidinones and 3, 4-dihydropyrimidinones using a highly active and recyclable supported ionic liquid phase organocatalyst. Australian Journal of Chemistry, 2016, 69, 230- 238. |
45 | CHAKRABORTI A K, ROY S R, KUMAR D, et al. Catalytic application of room temperature ionic liquids: [bmim][MeSO4] as a recyclable catalyst for synthesis of bis(indolyl)methanes. Ion-fishing by MALDI-TOF-TOF MS and MS/MS studies to probe the proposed mechanistic model of catalysis . Green Chemistry, 2008, (10): 1111- 1118. |
46 | WANG M, LUO C, WANG Z, et al. Sulfate ionic liquids promoted FeCl3-catalyzed dehydration of propargyl alcohol . Molecular Catalysis, 2022, 531, 112674. |
47 | KAWADA S, WATANABE S, TADOKORO C, et al. Efects of alkyl chain length of sulfate and phosphate anion-based ionic liquids on tribochemical reactions. Tribology Letters, 2018, 66, 1- 9. |
48 | LÓPEZ-SÁNCHEZ F, OTERO I, LÓPEZ E R, et al. Tribological behavior of two 1-ethyl-3-methylimidazolium alkyl sulfates as neat lubricants for a steel–steel contact. Tribology Transactions, 2017, 60, 729- 738. |
49 | MORALES W, STREET K W, RICHARD R M, et al. Tribological testing and thermal analysis of an alkyl sulfate series of ionic liquids for use as aerospace lubricants. Tribology Transactions, 2012, 55 (6): 815- 821. |
50 | PEJAKOVIĆ V, KALIN M. Frictional behaviour of imidazolium sulfate ionic liquid additives under mixed slide-to-roll conditions: Part 1 — Variation of mixtures with identical weight ratio of ionic liquid additive. Lubrication Science, 2015, 27, 463- 477. |
51 | PEJAKOVIĆ V, TOMASTIK C, DORR N, et al. Influence of concentration and anion alkyl chain length on tribological properties of imidazolium sulfate ionic liquids as additives to glycerol in steel–steel contact lubrication. Tribology International, 2016, 97, 234- 243. |
52 | AMORIM P M, FERRARIA A M, COLACO R, et al. Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces. Beilstein Journal of Nanotechnology, 2017, 8 (1): 1961- 1971. |
53 | SHIFLETT M B, YOKOZEKI A. Separation of carbon dioxide and sulfur dioxide using room-temperature ionic liquid [bmim][MeSO4] . Energy Fuels, 2010, 24, 1001- 1008. |
54 | QAZI S, GÓMEZ-COMA L, ALBO J, et al. CO2 capture in a hollow fiber membrane contactor coupled with ionic liquid: Influence of membrane wetting and process parameters . Separation and Purification Technology, 2020, 233, 115986- 116000. |
55 | GOMEZ-COMA L, GAREA A, ROUCH J C, et al. Membrane modules for CO2 capture based on PVDF hollow fibers with ionic liquids immobilized . Journal of Membrane Science, 2016, 498, 218- 226. |
56 | DIAS J C, MARTINS M S, RIBEIRO S, et al. Electromechanical actuators based on poly(vinylidene fluoride) with [N1112(OH)][NTf2] and [C2mim] [C2SO4] . Journal of Materials Science, 2016, 51, 9490- 9503. |
57 | RAG S A, SELVAKUMAR M, BHAT S, et al. Synthesis and characterization of reduced graphene oxide for supercapacitor application with a biodegradable electrolyte. Journal of Electronic Materials, 2020, 49, 985- 994. |
58 | MOHAMMED H, AL-OTHMAN A, NANCARROW P, et al. Enhanced proton conduction in zirconium phosphate/ionic liquids materials for hightemperature fuel cells. International Journal of Hydrogen Energy, 2021, 46, 4857- 4869. |
59 | YOO D, LEE J J, PARK C, et al. N-type organic thermoelectric materials based on polyaniline doped with the aprotic ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate. RSC Advances, 2016, 6 (43): 37130- 37135. |
[1] | 王玉新, 余知睿, 李涛, 梁世雷, 高欢. 8周高原训练对赛艇运动员红细胞生成、铁代谢和有氧运动能力的影响[J]. 华东师范大学学报(自然科学版), 2024, 2024(4): 111-122. |
[2] | 何鑫鑫, 宋海川. 基于隐层傅里叶卷积的非平稳纹理合成方法[J]. 华东师范大学学报(自然科学版), 2024, 2024(2): 119-130. |
[3] | 刘晓艳, 高恩庆. N-烷基化修饰赋予金属有机框架荧光响应功能[J]. 华东师范大学学报(自然科学版), 2023, 2023(1): 73-81. |
[4] | 赵智鹏, 孙莹, 高小童, 周锋. 二氧化碳作为C1合成子参与的手性杂环化合物的不对称催化合成研究[J]. 华东师范大学学报(自然科学版), 2023, 2023(1): 31-40. |
[5] | 曹梦瑶, 李丽, 裴昊. 基于合成核酸分子工程的生物医学应用[J]. 华东师范大学学报(自然科学版), 2023, 2023(1): 177-185. |
[6] | 赵磊, 李泽霖, 李愽龙, 边树昌, 王建华, 张海兰, 赵晨. 生物基2,5-呋喃二甲酸的绿色合成技术综述[J]. 华东师范大学学报(自然科学版), 2023, 2023(1): 160-169. |
[7] | 王欢, 陆嘉星. 电催化CO2与有机化合物耦合制备增值化学品[J]. 华东师范大学学报(自然科学版), 2023, 2023(1): 140-148. |
[8] | 于鹏, 钟小菁, 耿旭朴. 基于哨兵1号的台风风场反演方法研究[J]. 华东师范大学学报(自然科学版), 2022, 2022(3): 125-136. |
[9] | 王国梁, 陈梦楠, 陈蕾. 一种基于Tacotron 2的端到端中文语音合成方案[J]. 华东师范大学学报(自然科学版), 2019, 2019(4): 111-119. |
[10] | 李鹏飞, 王美婷, 梅晔. 平衡态与非平衡态分子溶剂化自由能的计算效率比较[J]. 华东师范大学学报(自然科学版), 2019, 2019(1): 83-92. |
[11] | 戚纤云, 周云轩, 田波, 于鹏. 基于Sentinel-1A的长江口近岸风矢量场反演研究[J]. 华东师范大学学报(自然科学版), 2017, 2017(6): 126-135,146. |
[12] | 叶希韵, 朱萍亚. 黑色素的合成与美白产品的研究进展[J]. 华东师范大学学报(自然科学版), 2016, 2016(2): 1-8. |
[13] | 侯 帅, 潘 伟. 未知信源数条件下基于合成空间谱的弱信号DOA估计方法[J]. 华东师范大学学报(自然科学版), 2013, 2013(6): 102-111. |
[14] | 杨 芳, 王治文, 陈祥恩, 马春燕. 完全图和星的合成的点可区别正常边染色[J]. 华东师范大学学报(自然科学版), 2013, 2013(5): 136-143. |
[15] | 李翠琳;于定勇;高洋洋. 基于数值模拟和SAR的波峰长度分布研究[J]. 华东师范大学学报(自然科学版), 2009, 2009(3): 48-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||