华东师范大学学报(自然科学版) ›› 2026, Vol. 2026 ›› Issue (1): 87-98.doi: 10.3969/j.issn.1000-5641.2026.01.008

• 流域污染控制与碳中和路径探索 • 上一篇    下一篇

污水处理新技术助力实现碳中和: 路径、机制与展望

周启星*(), 王辉(), 程思雯   

  1. 南开大学 环境科学与工程学院 碳中和交叉科学中心 环境污染过程与基准教育部重点实验室, 天津 300350
  • 收稿日期:2025-10-20 接受日期:2025-12-01 出版日期:2026-01-25 发布日期:2026-01-29
  • 通讯作者: 周启星 E-mail:zhouqx@nankai.edu.cn;wh13646018712@163.com
  • 作者简介:王 辉, 男, 博士研究生, 研究方向为环境修复与污染治理. E-mail: wh13646018712@163.com
  • 基金资助:
    国家自然科学基金委国际合作与交流项目 (32461143206); 高等学校学科创新引智计划 (B17025)

New wastewater treatment technologies advance carbon neutrality: Pathways, mechanisms, and outlook

Qixing ZHOU*(), Hui WANG(), Siwen CHENG   

  1. Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
  • Received:2025-10-20 Accepted:2025-12-01 Online:2026-01-25 Published:2026-01-29
  • Contact: Qixing ZHOU E-mail:zhouqx@nankai.edu.cn;wh13646018712@163.com

摘要:

污水处理行业作为关键碳排放源, 其减污降碳协同转型对实现碳中和目标具有重要战略意义. 系统综述了支撑污水处理领域实现碳中和的各类新兴技术, 聚焦生物强化、资源回收与能源自给、新型功能材料、自然与混合系统、数字化协同耦合模式等核心方向, 阐释了不同技术路径的减碳机制与应用价值. 研究发现, 生物强化技术通过革新微生物代谢路径削减温室气体排放与能耗; 资源回收技术将有机污染物转化为清洁能源, 推动处理系统实现能源自给并形成碳汇效应; 新型功能材料通过靶向捕集温室气体、强化电子传递等方式进一步降低碳排放强度; 自然与混合系统依托生态循环实现碳的主动固定与能量再生; 数字化协同耦合模式则通过全流程智能调控, 推动污水处理厂从碳排放主体转型为碳资产生产者. 当前新兴技术规模化应用面临微生物调控困难、监测体系不完善、碳核算标准滞后及经济成本与环境效益失衡等瓶颈. 未来需从技术研发、政策机制、产业生态层面协同发力, 通过强化功能微生物调控、构建模块化技术体系、完善碳交易政策与绿色金融工具等措施, 推动污水处理行业从传统能源消耗端升级为资源产出中枢, 为全球碳中和实践提供系统性解决方案.

关键词: 污水处理, 新兴技术, 温室气体排放, 碳中和

Abstract:

The synergistic transformation toward pollution and carbon reduction of the wastewater treatment sector, a key source of carbon emissions, is of strategic importance for achieving carbon neutrality. This paper systematically reviews emerging technologies that empower carbon neutrality in wastewater treatment, focusing on bioenhancement, resource recovery and energy self-sufficiency, novel functional materials, natural and hybrid systems, and digital synergistic coupling models, while clarifying the carbon-reduction mechanisms and application value of each technical pathway. The study found that bioenhancement reduces greenhouse gas emissions and energy consumption by revolutionizing microbial metabolic routes. Resource-recovery technologies convert organic pollutants into clean energy, driving treatment systems toward energy self-sufficiency while creating carbon-sink effects. Novel functional materials lower carbon-emission intensity by selectively capturing greenhouse gases and accelerating electron transfer. Natural and hybrid systems actively sequester carbon and regenerate energy through ecological cycling, and digital synergistic coupling transforms wastewater treatment plants from carbon emitters into carbon-asset producers via whole-process intelligent control. Currently, large-scale application of these emerging technologies is hindered by difficult microbial regulation, inadequate monitoring systems, lagging carbon-accounting standards, and an imbalance between economic cost and environmental benefit. Future efforts should coordinate technology R&D, policy mechanisms, and industrial ecosystems by strengthening functional-microbe regulation, building modular technology systems, and perfecting carbon-trading policies and green-finance instruments, thereby upgrading the wastewater treatment industry from a traditional energy consumer to a resource-output hub and offering a systematic solution for global carbon neutrality.

Key words: wastewater treatment, emerging technologies, greenhouse gas emissions, carbon neutrality

中图分类号: