[1] WANG H Z, DIXON R A. On-off switches for secondary cell wall biosynthesis[J]. Molecular Plant, 2012, 5(2): 297-303.[2] ZHONG R, LEE C, YE Z H. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis[J]. Trends in Plant Science, 2010, 15(11): 625-632.[3] MITSUDA N, SEKI M, SHINOZAKI K, et al.The NAC transcription factors 〖STBX〗NST1 and NST2〖STBZ〗 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence[J]. Plant Cell, 2005, 17(11): 2993-3006.[4] MITSUDA N, IWASE A, YAMAMOTO H, et al. NAC transcription factors, 〖STBX〗NST1 and NST3,〖STBZ〗 are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J]. Plant Cell, 2007, 19(1): 270-280.[5] ZHONG R, DEMURA T, YE Z H. 〖STBX〗SND1,〖STBZ〗 a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis[J]. Plant Cell, 2006, 18(11): 3158-3170.[6] OHASHI-ITO K, ODA Y, FUKUDA H. Arabidopsis VASCULAR-RELATED 〖STBX〗NAC-DOMAIN6〖STBZ〗 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation[J]. Plant Cell, 2010, 22(10): 3461-3473.[7] YAMAGUCHI M, MITSUDA N, OHTANI M, et al. VASCULAR-RELATED NAC-DOMAIN 〖STBX〗7〖STBZ〗 directly regulates the expression of a broad range of genes for xylem vessel formation[J]. Plant Journal, 2011, 66(4): 579-590.[8] KUBC M, UDAGAWA M, NISHIKUBO N, et al. Transcription switches for protoxylem and metaxylem vessel formation[J]. Genes & Development, 2005, 19(16):1855-1860.[9] ZHONG R, LEE C, YE Z H. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis[J]. Molecular Plant, 2010, 3(6): 1087-1103.[10] ZHONG R, YE Z H. 〖STBX〗MYB46 and MYB83〖STBZ〗 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes[J]. Plant and Cell Physiology, 2012, 53(2): 368-380.[11] ZHONG R,LEE C, ZHOU J, et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. Plant Cell, 2008, 20(10): 2763-2782.[12] MCCARTHY R L, ZHONG R, YE Z H. 〖STBX〗MYB83〖STBZ〗 is a direct target of 〖STBX〗SND1〖STBZ〗 and acts redundantly with 〖STBX〗MYB46〖STBZ〗 in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. Plant and Cell Physiology, 2009, 50(11): 1950-1964.[13] ZHAO Q, WANG H, YIN Y, et al. Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(32): 14496-14501.[14] ZHOU J, LEE C, ZHONG R, et al. 〖STBX〗MYB58 and MYB63〖STBZ〗 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis[J]. Plant Cell, 2009, 21(1): 248-266.[15] ZHAO Q, DIXON R A. Transcriptional networks for lignin biosynthesis: more complex than we thought[J]. Trends in Plant Science, 2011, 16(4): 227-233.[16] SULLIVAN S, RALET M C, BERGER A, et al. 〖STBX〗SA5〖STBZ〗 is required for the synthesis of cellulose with a role in structuring the adherent mucilage of Arabidopsis seeds[J]. Plant Physiology, 2011, 156(4): 1725-1739.[17] YORK W S, O′NEILL M A. Biochemical control of xylan biosynthesis-which end is up[J]. Current Opinion in Plant Biology, 2008, 11(3): 258-265.[18] BERTHET S, DEMONT-CAULET N, POLLET B, et al. Disruption of 〖STBX〗LACCASE4〖STBZ〗 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems[J]. Plant Cell, 2011, 23(3): 1124-1137.[19] GUO Y L, YUAN Z, SUN Y, et al. Characterizations of the uro mutant suggest that the URO gene is involved in the auxin action in Arabidopsis[J]. Acta Botanica Sinica, 2004, 46(7): 846-853.[20] YUAN Z, YAO X, ZHANG D, et al. Genome-wide expression profiling in seedlings of the Arabidopsis mutanturo that is defective in the secondary cell wall formation[J]. Journal of Integrative Plant Biology, 2007, 49(12): 1754-1762.[21] SUN Y, YANG Y, YUAN Z, et al. Overexpression of the Arabidopsis gene UPRIGHT ROSETTE reveals a homeostatic control for indole-3-acetic acid[J]. Plant Physiology, 2010, 153(3): 1311-1320.[22] HUANG H, TUDOR M, WEISS C A, et al. The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein[J]. Plant Molecular Biology, 1995, 28(3): 549-567.[23] ZHONG R, RICHARDSON E A, YE Z H. Two NAC domain transcription factors, 〖STBX〗SND1 and NST1,〖STBZ〗 function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis[J]. Planta, 2007, 225(6): 1603-1611.[24] WANG J, ELLIOTT J E, WILLIAMSON R E. Features of the primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana[J]. Journal of Experimental Botany, 2008, 59(10): 2627-2637.[25] LEE C, O′NEILL M A, TSUMURAYA Y, et al. The irregular 〖STBX〗xylem9〖STBZ〗 mutant is deficient in xylan xylosyltransferase activity[J]. Plant and Cell Physiology, 2007, 48(11): 1624-1634.[26] PENA M J, ZHONG R, ZHOU G K, et al. Arabidopsis irregular 〖STBX〗xylem8 and irregular xylem9:〖STBZ〗 Implications for the complexity of glucuronoxylan biosynthesis[J]. Plant Cell, 2007, 19(2): 549-563.[27] BROWN D M, GOUBET F, VICKY W W A, et al. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis[J]. Plant Journal, 2007, 52(6): 1154-1168.[28] ZHONG R Q, PENA M J, ZHOU G K, et al. Arabidopsis fragile 〖STBX〗fiber8,〖STBZ〗 which encodes a putative glucuronyl transferase, is essential for normal secondary wall synthesis[J]. Plant Cell, 2005, 17(12): 3390-3408.[29] BESSEAU S, HOFFMANN L, GEOFFROY P, et al. Flavonoid accumulation in arabidopsis repressed in lignin synthesis affects auxin transport and plant growth[J]. The Plant Cell Online, 2007, 19(1): 148-162.[30] LI X, BONAWITZ N D, WENG J K, et al. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids[J]. The Plant Cell Online, 2010, 22(5): 1620-1632.[31] YAN C, SHEN H, LI Q, et al. A novel ABA-hypersensitive mutant in Arabidopsis defines a genetic locus that confers tolerance to xerothermic stress[J]. Planta, 2006, 224(4): 889-899.[32] INOUE K, SEWALT V J H, MURRAY BALLANCE G, et al. Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-Methyltransferase and caffeoyl Coenzyme a 3-O-Methyltransferase in relation to lignification[J]. Plant Physiology, 1998, 117(3): 761-770.[33] FELLENBERG C, OHLEN M, HANDRICK V, et al. The role of 〖STBX〗CCoAOMT1 and COMT1〖STBZ〗 in Arabidopsis anthers[J]. Planta, 2012, 236(1): 51-61.[34] VANHOLME R, STORME V, VANHOLME B, et al. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis[J]. The Plant Cell Online, 2012, 24(9): 3506-3529.[35] DO C T, POLLET B, THéVENIN J, et al. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis[J]. Planta, 2007, 226(5): 1117-1129.[36] LEV-YADUN S, WYATT S E, FLAISHMAN M A, The inflorescence stem fibers of Arabidopsis thaliana revoluta 〖STBX〗(ifl1)〖STBZ〗 mutant[J]. Journal of Plant Growth Regulation, 2004, 23(4): 301-306.[37] ZHONG R Q, YE Z H. Amphivasal vascular bundle 1, a gain-of-function mutation of the 〖STBX〗IFL1/REV〖STBZ〗 gene, is associated with alterations in the polarity of leaves, stems and carpels[J]. Plant and Cell Physiology, 2004, 45(4): 369-385.[38] ZHONG R Q, YE Z H. Alteration of auxin polar transport in the Arabidopsis 〖STBX〗ifl1〖STBZ〗 mutants[J]. Plant Physiology, 2001, 126(2): 549-563.[39] RATCLIFFE O J, RIECHMANN J L, ZHANG J Z. INTERFASCICULAR FIBERLESS1 is the same gene as REVOLUTA[J]. Plant Cell, 2000, 12(3): 315-317.[40] ZHONG R Q, YE Z H. 〖STBX〗IFL1,〖STBZ〗 a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein[J]. Plant Cell, 1999, 11(11): 2139-2152.[41] FUNK V, KOSITSUP B, ZHAO C S, et al. The Arabidopsis xylem peptidase 〖STBX〗XCP1〖STBZ〗 is a tracheary element vacuolar protein that may be a papain ortholog[J]. Plant Physiology, 2002,128(1): 84-94.[42] AVCI U, PETZOLD H E, ISMAIL I O, et al. Cysteine proteases 〖STBX〗XCP1 and XCP2〖STBZ〗 aid micro-autolysis within the intactcentral vacuole during xylogenesis in Arabidopsis roots[J]. Plant Journal, 2008, 56(2): 303-315.[43] PEREZ-AMADOR M A, ABLER M L, DE ROCHER E J, et al. Identification of 〖STBX〗BFN1,〖STBZ〗 a biofunctional nuclease induced during leaf and stem senescence in Arabidopsis[J]. Plant Physiology, 2000, 122(1): 169-179.[44] MURRAY J A H, JONES A, GODIN C, et al. Systems analysis of shoot apical meristem growth and development: integrating hormonal and mechanical signaling[J]. The Plant Cell Online, 2012, 24(10): 3907-3919.[45] SáNCHEZ-RODRíGUEZ C, RUBIO-SOMOZA I, SIBOUT R, et al. Phytohormones and the cell wall in Arabidopsis during seedling growth[J]. Trends in Plant Science, 2010, 15(5): 291-301.[46] ZHONG R, YE Z H. IFL1, a Gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein[J]. The Plant Cell, 1999, 11(11): 2139-2152.[47] BERLETH T, MATTSSON J, HARDTKE C S. Vascular continuity and auxin signals[J]. Trends in Plant Science, 2000, 5(9): 387-393.[48] ZHANG M, ZHENG X, SONG S, et al. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality[J]. Nat Biotech, 2011, 29(5): 453-458. |