[1]ZHOU X, WAN L J, GUO Y G. Synthesis of MoS_{2 nanosheet--graphene
nanosheet hybrid materials for stable lithium storage[J]. Chemical
Communications, 2013, 49(18): 1838. [2] SATHISH M, TOMAI T, HONMA I. Graphene anchored with Fe3O4 nanoparticles
as anode for enhanced Li-ion storage[J]. Journal of Power Sources,
2012, 217: 85-91. [3] CHEN S, WANG Y, AHN H, et al. Microwave hydrothermal synthesis of high
performance tin-graphene nanocomposites for lithium ion batteries
[J]. Journal of Power Sources, 2012, 216: 22-27. [4] PARK S K, YU S H, WOO S, et al. A facile and green strategy for the
synthesis of MoS2 nanospheres with excellent Li-ion storage
properties [J]. Cryst Eng Comm, 2012, 14(24): 8323. [5] WINTER M, BRODD R J. What are batteries, fuel cells, and
supercapacitors [J]. Chem Rev 2004, 104: 4245-4269. [6] CHANG K, CHEN W. In situ synthesis of MoS_{2/graphene nanosheet
composites with extraordinarily high electrochemical performance for
lithium ion batteries [J]. Chemical Communications, 2011, 47(14):
4252. [7] BRIVIO J, ALEXANDER D T L, KIS A. Ripples and layers in ultrathin
MoS_{2 embranes [J]. Nano Letters, 2011, 11(12): 5148-5153. [8] TENNE R, MARGULIS L, GENUT M, et al. Polyhedral and cylindrical
structures of tungsten disulphide [J]. Letters to Nature, 1992, 360:
4-6. [9] RAMAKRISHNAMATTE H S S, GOMATHI A, MANNA A K, et al. MoS_{2 and
WS_{2 Analogues of graphene [J]. Angewandte Chemie, 2010,
122(24): 4153-4156. [10] WHITTINGHAM M S, GAMBLE JR F R. The lithium intercalates of the
transition metal dichalcogenides [J]. Materials Research Bulletin,
1975, 10(5): 363-371. [11] WHITTINGHAM M S. The role of ternary phases in cathode reactions [J].
Journal of The Electrochemical Society, 1976, 123(3): 315-320. [12] DINO T, CHRISTIAN P, JAEGERMANN W. Origin of the
electrochemical potential in intercalation electrodes [J]. J Phys
Chem B, 2004, 108: 6093-6099. [13] WANG Q, LI J. Facilitated lithium storage in MoS2 overlayers supported
on coaxial carbon nanotubes [J]. J Phys Chem C, 2007, 111:
1675-1682. [14] DING S, ZHANG D, CHEN J S, et al. Facile synthesis of hierarchical
MoS_{2 microspheres composed of few-layered nanosheets and their
lithium storage properties [J]. Nanoscale, 2012, 4(1): 95. [15] KWON J H, AHN H J, JEON M S, et al. The electrochemical properties of
Li/TEGDME/MoS_{2 cells using multi-wall carbon nanotubes as a
conducting agent [J]. Research on Chemical Intermediates, 2010,
36(6/7): 749-759. [16] STEPHENSON T, LI Z, OLSEN B, et al. Lithium ion battery applications of
molybdenum disulfide (MoS_{2) nanocomposites [J]. Energy {\&
Environmental Science, 2014, 7(1): 209. [17] CATHERINE M. ZELENSKI, DORHOUT P K. Template synthesis of
near-monodisperse [J]. J Am Chem Soc 1998, 120: 734-742. [18] XIANHUI CHEN, FAN R. Low-temperature hydrothermal synthesis of
transition [J]. Chem Mater, 2001, 13: 802 -805. [19] DRESSELHAUS M S, THOMAS I L. Alternative energy technologies [J].
Nature, 2001, 414(6861): 332-337. [20] CHANG K, CHEN W X, MA L, et al. Graphene-like MoS2/amorphous
carbon composites with high capacity and excellent stability as
anode materials for lithium ion batteries [J]. Journal of Materials
Chemistry, 2011, 21(17): 6251. [21] YANG L, WANG S, MAO J, et al. Hierarchical MoS_{2/polyaniline
nanowires with excellent electrochemical performance for lithium-ion
batteries [J]. Advanced Materials, 2013, 25(8): 1180-1184. [22] MAP Y, HAERING R R. Structural destabilization induced by lithium
intercalation in MoS_{2 andrelated compounds [J]. Canadian
Journal of Physics, 1983, 61: 76-84 [23] DU G, GUO Z, WANG S, et al. Superior stability and high capacity of
restacked molybdenum disulfide as anode material for lithium ion
batteries [J]. Chemical Communications, 2010, 46(7): 1106. [24] GORDON R A, YANG D, CROZIER E D, et al. Structures of exfoliated single
layers of WS_{2, MoS_{2, and MoSe_{2 in aqueous suspension
[J]. Physical Review B, 2002, 65(12): 125407. [25] CHEN X, CHEN Z, LI J. Critical electronic structures controlling phase
transitions induced by lithium ion intercalation in molybdenum
disulphide [J]. Chinese Science Bulletin, 2013, 58(14): 1632-1641. [26] CHEN X, HE J, SRIVASTAVA D, et al. Electrochemical cycling
reversibility of LiMoS_{2 using first-principles calculations
[J]. Applied Physics Letters, 2012, 100(26): 263901. [27] JOHN P, KIERON B, ERNZERHOF M. Generalized gradient
approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865-3868. [28] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the
liquid-metal-amorphous-semiconductor transition in germanium [J].
Physical Review B, 1994, 49(20): 251-269. [29] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set [J]. Physical
Review B, 1996, 54(16): 169-186. [30] BLOCHL P E. Projector augmented-wave method [J]. Physical Review B,
1994, 50(24): 953-979. [31] GRIMME S. Semiempirical GGA-type density functional constructed with a
long-range dispersion correction [J]. Journal of Computational
Chemistry, 2006, 27(15): 1787-1799. [32] CHEN Z, LI J, ZHANG Z. First principles investigation of electronic
structure change and energy transfer by redox in inverse spinel
cathodes LiNiVO_{4 and LiCoVO_{4 [J]. Journal of Materials
Chemistry, 2012, 22(36): 18968. [33] NEUGEBAUER J, SCHEFFLER M. Adsorbate-substrate and adsorbate-adsorbate
interactions of Na and K adlayers on Al(111) [J]. Physical Review B,
1992, 46(24): 16067-16080. [34] MAKOV G, PAYNE M. Periodic boundary conditions in ab initio
calculations [J]. Physical Review B, 1995, 51(7): 4014-4022. [35] ZHANG C, WU H B, GUO Z, et al. Facile synthesis of carbon-coated
MoS_{2 nanorods with enhanced lithium storage properties [J].
Electrochemistry Communications, 2012, 20: 7-10. [36] HWANG H, KIM H, CHO J. MoS_{2 nanoplates consisting of disordered
graphene-like layers for high rate lithium battery anode materials
[J]. Nano Letters, 2011, 11(11): 4826-4830. [37] DAS S K, MALLAVAJULA R, JAYAPRAKASH N, et al. Self-assembled
MoS_{2-carbon nanostructures: influence of nanostructuring and
carbon on lithium battery performance [J]. Journal of Materials
Chemistry, 2012, 22(26): 12988. [38] FENG C, MA J, LI H, et al. Synthesis of molybdenum disulfide
(MoS_{2) for lithium ion battery applications [J]. Materials
Research Bulletin, 2009, 44(9): 1811-1815. [39] FANG X, HUA C, GUO X, et al. Lithium storage in commercial MoS_{2 in
different potential ranges [J]. Electrochimica Acta, 2012, 81:
155-160. [40] LIU C, YU Z, NEFF D, et al. Graphene-based supercapacitor with an
ultrahigh energy density [J]. Nano Letters, 2010, 10(12): 4863-4868. [41] GOODENOUGH J B, KIM Y. Challenges for rechargeable li batteries [J].
Chemistry of Materials, 2010, 22(3): 587-603. [42] CHEN J, TAO Z L, SUO L. Lithium intercalation in
open-ended TiS_{2 nano-tubes [J]. Angewandte Chemie, 2003,
115(19): 2197-2201. [43] JULIEN C M. Lithium intercalated compounds charge transfer and related
properties [J]. Materials Science and Engineering R, 2003, 40:
47-102. [44] DAHN J R, ZHENG T, LIU Y, et al. Mechanisms for lithium insertion in
carbonaceous materials [J]. Science, 1995, 270(5236): 590-593. |