[1] KOLLMAN P. Free energy calculations:Applications to chemical and biochemical phenomena[J]. Chem Rev, 1993, 93(7):2395-2417.
[2] HANSEN N, VAN GUNSTEREN W F. Practical aspects of free-energy calculations:A review[J]. J Chem Theory Comput, 2014, 10(7):2632-2647.
[3] WOLFENDEN R, ANDERSSON L, CULLIS P M, et al. Affinities of amino acid side chains for solvent water[J]. Biochemistry, 1981, 20(4):849-855.
[4] RADZICKA A, WOLFENDEN R. Comparing the polarities of the amino acids:Side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol and neutral aqueous solution[J]. Biochemistry, 1988, 27(5):1664-1670.
[5] SHIRTS M R, PITERA J W, SWOPE W C, et al. extremely precise free energy calculations of amino acid side chain analogs:Comparison of common molecular mechanics force fields for proteins[J]. J Chem Phys, 2003, 119(11):5740-5761.
[6] HESS B, NICO F A. Hydration thermodynamic properties of amino acid analogues:A systematic comparison of biomolecular force fields and water models[J]. J Phys Chem B, 2006, 110(35):17616-17626.
[7] VILLA A, MARK A E. Calculation of the free energy of solvation for neutral analogs of amino acid side chains[J]. J Comput Chem, 2002, 23(5):548-553.
[8] MACCALLUM J L, TIELEMAN D P. Calculation of the water-cyclohexane transfer free energies of neutral amino acid side-chain analogs using the all-atom force field[J]. J Comput Chem, 2003, 24(15):1930-1935.
[9] WANG J M, WOLF R M, CALDWELL J W, et al. Development and testing of a general amber force field[J]. J Comput Chem, 2004, 25:1157-1174.
[10] CASE D A, BERRYMAN J T, BETZ R M, et al. AMBER 2014[Z]. San Francisco:University of California, 2014.
[11] ZWANZIG R W. High-temperature equation of state by a perturbation method. I. nonpolar gases[J]. J Chem Phys, 1954, 22(8):1420-1426.
[12] KIRKWOOD J G. Statistical mechanics of fluid mixtures[J]. J Chem Phys, 1935, 3(5):300-313.
[13] BENNETT C H. Efficient estimation of free energy differences from monte carlo data[J]. J Comput Phys, 1976, 22(2):245-268.
[14] SHIRTS M R, CHODREA J D. Statistically optimal analysis of samples from multiple equilibrium states[J]. J Chem Phys, 2008, 129(12):124105.
[15] PALIWAL H, SHIRTS M R. A benchmark test set for alchemical free energy transformations and its use to quantify error in common free energy methods[J]. J Chem Theory Comput, 2011, 7(12):4115-4134.
[16] BRUCKNER S, BORESCH S. Efficiency of alchemical free energy simulations. I. A practical comparison of the exponential formula, thermodynamic integration, and bennett's acceptance ratio method[J]. J Comput Chem, 2011, 32(7):1303-1319.
[17] RUITER A, BORESCH S, OOSTENBRINK C. Comparison of thermodynamic integration and bennett acceptance ratio for calculating relative protein-ligand binding free energies[J]. J Comput Chem, 2013, 34(12):1024-1034.
[18] JARZYNSKI C. Nonequilibrium equality for free energy differences[J]. Phys Rev Lett, 1997, 78:2690-2693.
[19] CROOKS G. Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems[J]. J Statis Phys, 1998, 90:1481-1487.
[20] CROOKS G. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences[J]. Phys Rev E, 1999, 60:2721-2726.
[21] CROOKS G. Path-ensemble averages in systems driven far from equilibrium[J]. Phys Rev E, 1999, 61:2361-2726.
[22] JARZYNSKI C. Rare events and the convergence of exponentially averaged work values[J]. Phys Rev E, 2006, 73:046105.
[23] SHIRTS M R, BAIR E, HOOKER G, et al. Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods[J]. Phys Rev Lett, 2003, 91:140601.
[24] COSSINS B P, FOUCHER S, EDGE C M, et al. Assessment of nonequilibrium free energy methods[J]. J Phys Chem B, 2009, 113:5508-5519.
[25] GOETTE M, GRUBMULLER H. Accuracy and convergence of free energy differences calculated from nonequilibrium switching processes[J]. J Comput Chem, 2009, 30:447-456.
[26] JARZYNSKI C. Equilibrium free-energy differences from nonequilibrium measurements:A master-equation approach[J]. Phys Rev E, 1997, 56:5018-5035.
[27] HENDRIX D A, JARZYNSKI C. A fast growth method of computing free energy differences[J]. J Chem Phys, 2001, 114:5974-5981.
[28] HUMMER G. Fast-growth thermodynamic integration:Error and efficiency analysis[J]. J Chem Phys, 2001, 114:7330-7337.
[29] YTREBERG F M, ZUCKERMAN D M. Single-ensemble nonequilibrium path-sampling estimates of free energy differences[J]. J Chem Phys, 2004, 120:10876-10879.
[30] LECHNER W, OBERHOFER H, DELLAGO C, et al. Equilibrium free energies from fast-switching trajectories with large time steps[J]. J Chem Phys, 2006, 124:044113.
[31] BAYLY C I, CIEPLAK P, CORNELL W, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges:The RESP model[J]. J Phys Chem, 1993, 97(40):10269-10280.
[32] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, Revision B.01.[Z], Wallingford:Ganussian Inc, 2010.
[33] STEINBRECHER T, MOBLEY D L, CASE D A. Nonlinear scaling schemes for lennard-jones interactions in free energy calculations[J]. J Chem Phys, 2007, 127:214108.
[34] DARDEN T, YORK D, PEDERSEN L. Particle mesh ewald:An nlog(N) method for ewald sums in large systems[J]. J Chem Phys, 1993, 98:10089-10092.
[35] WENNMOHS F, SCHINDLER M. Development of a multipoint model for sulfur in proteins:A new parametrization scheme to reproduce high-level ab initio interaction energies[J]. J Comput Chem, 2005, 26(3):283-293.
[36] OLIVET A, VEGA L F. Optimized molecular force field for sulfur hexafluoride simulations[J]. J Chem Phys, 2007, 126(14):144502.
[37] ZHANG X J, GONG Z, LI J, et al. Intermolecular sulfur... oxygen interactions:Theoretical and statistical investigations[J]. J Chem Inf Model, 2015, 55:2138-2153.
[38] WANG M T, LI P F, JIA X Y, et al. An efficient strategy for the calculations of solvation free energies in water and chloroform at quantum mechanical/molecular mechanical level[J]. J Chem Inf Model, 2017, 57:2476-2489. |