华东师范大学学报(自然科学版) ›› 2021, Vol. 2021 ›› Issue (4): 109-120.doi: 10.3969/j.issn.1000-5641.2021.04.013
收稿日期:
2020-07-30
出版日期:
2021-07-25
发布日期:
2021-07-23
通讯作者:
唐剑武
E-mail:jwtang@sklec.ecnu.edu.cn
基金资助:
Wenxiu SANG1, Hualei YANG1, Jianwu TANG1,2,*()
Received:
2020-07-30
Online:
2021-07-25
Published:
2021-07-23
Contact:
Jianwu TANG
E-mail:jwtang@sklec.ecnu.edu.cn
摘要:
针对我国南方红壤(江西鹰潭孙家坝小流域)4种不同土地利用类型, 在2019年6—10月开展了室内土壤温湿度控制实验, 采用温室气体分析仪(Picarro-G2508)结合静态箱法对土壤温室气体(CO2、CH4、N2O)排放通量进行同步实时监测, 以研究全球气候变化背景下不同土地利用类型土壤温室气体排放差异及其对温湿度的响应. 结果显示, 4种土地利用类型土壤的全球增温潜势(global warming potential, GWP)从高到低依次为稻田、橘园、林地、旱地, 表明稻田土壤温室气体排放对全球变暖贡献最大. 温控实验中, 土壤呼吸(CO2排放)与土壤温度呈显著正指数相关关系(p < 0.01), 且4种土地利用类型土壤呼吸的温度敏感系数 Q10值分别为林地2.61、旱地2.51、橘园3.12、稻田3.17. 其中, 稻田土壤呼吸的温度敏感度最高, 表明稻田土壤具有较高的CO2排放潜力, 而CH4、N2O排放与土壤温度的相关性不显著. 湿度控制实验中, 土壤CO2排放随土壤湿度增加而先升高后降低, 并在土壤湿度20% GWC (gravity water content)时达到最大; 稻田土壤CH4排放与土壤湿度正相关(R2 = 0.8875), 但其他3种土地利用类型土壤CH4排放与土壤湿度不相关; 4种土地利用类型土壤N2O排放通量均随土壤湿度的增加呈先增后减趋势, 并在土壤湿度为25% GWC时达到峰值.
中图分类号:
桑文秀, 杨华蕾, 唐剑武. 不同土地利用类型土壤温室气体排放对温湿度的响应[J]. 华东师范大学学报(自然科学版), 2021, 2021(4): 109-120.
Wenxiu SANG, Hualei YANG, Jianwu TANG. Response of soil greenhouse gas emissions to temperature and moisture across different land-use types[J]. Journal of East China Normal University(Natural Science), 2021, 2021(4): 109-120.
表1
土壤初始理化性质"
土地利用类型 | 粘粒度/% | 土壤pH值 | 有机碳/% | 总氮/% | 电导率/(S·m–1) | 土壤容重/ (g·cm–3) | 土壤湿度/% |
林地 | 48.685 ± 1.151 | 6.33 ± 0.039 | 10.304 ± 0.818 | 1.203 ± 0.114 | 0.037 ± 0.006 | 1.11 ± 0.048 | 16.56 ± 2.06 |
旱地 | 33.065 ± 1.117 | 6.83 ± 0.036 | 6.286 ± 0.701 | 0.842 ± 0.056 | 0.033 ± 0.005 | 1.06 ± 0.019 | 13.47 ± 1.70 |
橘园 | 19.057 ± 1.007 | 6.66 ± 0.037 | 8.301 ± 0.647 | 0.920 ± 0.107 | 0.027 ± 0.024 | 1.17 ± 0.045 | 14.38 ± 1.26 |
稻田 | 14.279 ± 0.509 | 5.50 ± 0.091 | 23.457 ± 1.020 | 0.685 ± 0.087 | 2.335 ± 0.086 | 1.02 ± 0.129 | 25.60 ± 1.11 |
1 | ZAVAREH K. Extreme precipitation events and the applicability of global climate models to the study of floods and droughts. Mathematics and Computers in Simulation, 1997, 43 (3): 261- 268. |
2 | 严中伟, 杨赤. 近几十年中国极端气候变化格局. 气候与环境研究, 2000, 5 (3): 267- 272. |
3 |
GORNITZ V, COUCH S, HARTIG E K. Impacts of sea level rise in new york city metropolitan area. Global and Planetary Change, 2001, 32 (1): 61- 88.
doi: 10.1016/S0921-8181(01)00150-3 |
4 | 刘吉峰, 丁裕国, 江志红. 全球变暖加剧对极端气候概率影响的初步探讨. 高原气象, 2007, 26 (4): 837- 842. |
5 |
BEIN T, KARAGIANNIDIS C, QUINTEL M. Climate change, global warming, and intensive care. Intensive Care Medicine, 2019, 46 (9): 485- 487.
doi: 10.1007/s00134-019-05888-4 |
6 | IPCC. Climate Change 2007: The Physical Science Basis [M]. Cambridge: Cambridge University Press, 2007. |
7 |
DE J B, ANAYA C, MASERA O, et al. Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. Forest Ecology and Management, 2010, 260 (10): 1689- 1701.
doi: 10.1016/j.foreco.2010.08.011 |
8 | WHALEN S C, REEBURGH W S. Moisture and temperature sensitivity of CH4 oxidation in boreal soils . Soil Biology and Biochemistry, 1996, 28 (10/11): 1271- 1281. |
9 | GUNTIÑASAABA M E. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. European Journal of Soil Biology, 2012, 48 (1): 73- 80. |
10 | 苏王娟, 李勇, 石辉, 等. 温度和水分对长沙市丘陵马尾松林红壤N2O排放的影响——一个室内培养试验 . 林业科学, 2013, 49 (3): 152- 158. |
11 | 顾航, 肖凡书, 贺志理, 等. 湿地微生物介导的甲烷排放机制. 微生物学报, 2018, 58 (4): 618- 632. |
12 |
LINDSEY E R, FERNANDEZ I J. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce–fir forest soil in Maine, USA . Global Change Biology, 1998, 4 (6): 597- 605.
doi: 10.1046/j.1365-2486.1998.00169.x |
13 | XU L, BALDOCCHI D D, TANG J. How soil moisture, rain pulses and growth alter the response of ecosystem respiration to temperature. Global Biogeochemical Cycles, 2004, 18 (4): GB4002. |
14 |
TANG J, BOLSTAD P V, DESAI A R, et al. Ecosystem respiration and its components in an old-growth northern forest in the Great Lakes region of the United States. Agricultural and Forest Meteorology, 2008, 148 (2): 171- 185.
doi: 10.1016/j.agrformet.2007.08.008 |
15 | PAVELKA M, ACOSTA M, MAREK M V, et al. Dependence of the Q10 values on the depth of the soil temperature measuring point . Plant and Soil, 2007, 292 (1/2): 171- 179. |
16 |
CAREY J C, TANG J, TEMPLER P H, et al. Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the USA (PNAS), 2016, 113 (48): 13797- 13802.
doi: 10.1073/pnas.1605365113 |
17 | 蒋高明, 黄银晓. 北京山区辽东栎林土壤释放CO2的模拟实验研究 . 生态学报, 1995, 17 (5): 477- 482. |
18 |
LINN D M, DORAN J W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America, 1984, 48 (6): 1267- 1272.
doi: 10.2136/sssaj1984.03615995004800060013x |
19 |
PATRICK M, ERIC F L. Global forest transition: Prospects for an end to deforestation, Michigan. Annual Review of Environment and Resources, 2011, 36 (1): 343- 371.
doi: 10.1146/annurev-environ-090710-143732 |
20 | BRUNN G J, HUDSON C C, SEKULI A, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science, 1997, 277 (5322): 99- 101. |
21 |
YAN X, INDERWILDI O R, KING D A. Biofuels and synthetic fuels in the US and China: A review of Well-to-Wheel energy use and greenhouse gas emissions with the impact of land-use change. Energy Environmental Science, 2010, 3 (2): 190- 197.
doi: 10.1039/B915801D |
22 | 鲁江, 骆检兰, 苏正伟, 等. 亚热带红壤区不同土地利用方式土壤呼吸研究. 农业现代化研究, 2012, 33 (6): 115- 118. |
23 |
伍玉鹏, 刘田, 彭其安, 等. 氮肥配施下不同C/N作物残渣还田对红壤温室气体排放的影响. 农业环境科学学报, 2014, 33 (10): 2053- 2062.
doi: 10.11654/jaes.2014.10.025 |
24 | 刘玲玲. 千烟洲红壤丘陵区土壤主要温室气体排放通量研究 [D]. 北京: 北京师范大学, 2007. |
25 |
WANYAMA I, RUFINO M C, PELSTER D E, et al. Land use, land use history, and soil type affect soil greenhouse gas fluxes from agricultural landscapes of the east african highlands. Journal of Geophysical Research: Biogeosciences, 2018, 123 (3): 976- 990.
doi: 10.1002/2017JG003856 |
26 | ZHANG L H, SONG L P, WANG B C, et al. Co-effects of salinity and moisture on CO2 and N2O emissions of laboratory incubated salt-affected soils from different vegetation types . Geoderma, 2018, 332 (6): 109- 120. |
27 |
MA S S, XIONG J P, CUI R X, et al. Effects of intermittent aeration on greenhouse gas emissions and bacterial community succession during large-scale membrane-covered aerobic composting. Journal of Cleaner Production, 2020, 266, 121551.
doi: 10.1016/j.jclepro.2020.121551 |
28 |
MARTIN R M, MOSEMAN V S. Greenhouse gas fluxes vary between phragmites Australis and native vegetation zones in coastal wetlands along a salinity gradient. Wetlands, 2015, 35 (6): 1021- 1031.
doi: 10.1007/s13157-015-0690-y |
29 |
ZSCHORNACK T, DA ROSA C M, PEDROSO G M, et al. Mitigation of yield-scaled greenhouse gas emissions in subtropical paddy rice under alternative irrigation systems. Nutrient Cycling Agroecosystems, 2016, 105 (1): 61- 73.
doi: 10.1007/s10705-016-9775-0 |
30 | ROSENTRETER J A, MAHER D T, ERLER D V, et al. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks-A revision of global mangrove CO2 emissions . Geochimica et Cosmochimica Acta, 2018, 222 (1): 729- 745. |
31 | 王巧环, 任玉芬, 孟龄, 等. 元素分析仪同时测定土壤中全氮和有机碳. 分析试验室, 2013, (10): 41- 45. |
32 | 陈莹璐, 张玉柱, 谭子辉, 等. MS2000 和 LS13320 激光粒度仪测定沉积物粒度结果的差异. 中山大学学报(自然科学版), 2018, (4): 48- 55. |
33 | RISK D, KELLMAN L, BELTRAMI H. Carbon dioxide in soil profiles: Production and temperature dependence. Geophysical Research Letters, 2002, 29 (6): 1- 4. |
34 |
SCHǛTZ H, SEILER W, CONRAD R. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry, 1990, 11 (2): 77- 95.
doi: 10.1007/BF00002060 |
35 |
丁维新, 蔡祖聪. 温度对甲烷产生和氧化的影响. 应用生态学报, 2003, 14 (4): 604- 608.
doi: 10.3321/j.issn:1001-9332.2003.04.029 |
36 |
MAAG M, VINTHER F P. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology, 1996, 4 (1): 5- 14.
doi: 10.1016/0929-1393(96)00106-0 |
37 |
DORLAND S, BEAUCHAMP E G. Denitrification and ammonification at low soil temperatures. Canadian Journal of Soil Science, 1991, 71 (3): 293- 303.
doi: 10.4141/cjss91-029 |
38 | STOTTLEMYER R, TOCZYDLOWSKI D. Nitrogen mineralization in a mature boreal forest, Isle Royale, Michigan. Journal of Environmental Quality, 1999, 28 (2): 709- 720. |
39 | 郑循华, 王明星. 温度对农田N2O产生与排放的影响 . 环境科学, 1997, 18 (5): 1- 5. |
40 |
CASTALDI S. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biology and Fertility of Soils, 2000, 32 (1): 67- 72.
doi: 10.1007/s003740000218 |
41 | 高进长, 苏永红. 土壤呼吸对不同来源水分响应的研究进展. 干旱区研究, 2012, 29 (6): 1014- 1021. |
42 |
戴万宏, 王益权, 黄耀, 等. 农田生态系统土壤CO2释放研究 . 西北农林科技大学学报(自然科学版), 2005, 32 (12): 1- 7.
doi: 10.3321/j.issn:1671-9387.2005.12.001 |
43 |
邓东周, 范志平, 王红, 等. 土壤水分对土壤呼吸的影响. 林业科学研究, 2009, 22 (5): 722- 727.
doi: 10.3321/j.issn:1001-1498.2009.05.018 |
44 | 王建林, 赵风华, 欧阳竹. 灌溉量对灌浆期麦田土壤呼吸的影响. 华北农学报, 2010, 25 (3): 186- 189. |
45 | PONNAMPERUMA F N. Organic matter and rice: Straw as source of nutrients for wetland rice [R]. Manila (Philippines): International Rice Research Institute Publication, 1984: 117-136. |
46 |
KUCERA C L, KIRKHAM D R. Soil respiration studies in tall grassprairie in Missourt. Ecology, 1971, 52, 912- 915.
doi: 10.2307/1936043 |
47 | RUANE A C, ROSENZWEIG C. Agriculture & Food Systems to 2050: Climate Change Impacts on Agriculture [M]. Singapore: World Scientific Publishing, 2019: 161-184. |
48 | YAGI K. MINAMI K, OGAWA Y. Effects of water percolation on methane emission from paddy fields. Res Rep Div Envrion Planning, 1990, (6): 105- 112. |
49 |
YAGI K, MINAMI K, OGAWA Y. Effects of water percolation on methane emission from rice paddies: A lysimeter experiment. Plant and Soil, 1998, 198 (2): 193- 200.
doi: 10.1023/A:1004379914540 |
50 | 唐罗忠, 生原喜久雄, 户田浩人, 等. 湿地林土壤的Fe2+, Eh及pH值的变化 . 生态学报, 2005, 25, (1): 103- 107. |
51 |
侯会静, 杨士红, 徐俊增. 控制灌溉稻田CH4排放的影响因子分析 . 节水灌溉, 2016, 41 (8): 70- 75.
doi: 10.3969/j.issn.1007-4929.2016.08.017 |
52 | 丁昌璞, 于天仁. 水稻土中氧化还原过程的研究: Ⅳ. 红壤性水稻土中铁锰的活动性. 土壤学报, 1958, 6 (2): 99- 107. |
53 |
CASTRO M S, MELILLO J M, STEUDLER P A, et al. Soil moisture as a predictor of methane uptake by temperate forest soils. Canadian Journal of Forest Research, 1994, 24 (9): 1805- 1810.
doi: 10.1139/x94-233 |
54 | PALM C A, ALEGR J C, AREVALO L, et al. Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Global Biogeochemical Cycles, 2002, 16 (4): 21- 22. |
55 |
王连峰, 蔡祖聪. 水分和温度对旱地红壤硝化活力和反硝化活力的影响. 土壤, 2004, 36 (5): 543- 560.
doi: 10.3321/j.issn:0253-9829.2004.05.014 |
56 | 谢勇, 荣湘民, 何欣, 等. 农田土壤N2O排放的主要影响因素 . 湖南农业科学, 2015, (11): 92- 97. |
57 |
侯爱新, 王正平. 稻田CH4和N2O排放关系及其微生物学机理和一些影响因子 . 应用生态学报, 1997, 8 (3): 270- 274.
doi: 10.3321/j.issn:1001-9332.1997.03.009 |
58 | 熊莉, 徐振锋, 吴福忠, 等. 雪被斑块对川西亚高山冷杉林土壤氮转化酶活性的影响. 应用生态学报, 2014, 25 (5): 1293- 1299. |
59 |
SCHAUFLER G, KITZLER B, SCHINDLBACHER A, et al. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. European Journal of Soil Science, 2010, 61 (5): 683- 696.
doi: 10.1111/j.1365-2389.2010.01277.x |
60 |
李昌新, 黄山, 彭现宪, 等. 南方红壤稻田与旱地土壤有机碳及其组分的特征差异. 农业环境科学学报, 2009, 28 (3): 606- 611.
doi: 10.3321/j.issn:1672-2043.2009.03.035 |
61 |
LIN S, JAVED L, HU G R, et al. Differences in nitrous oxide flfluxes from red soil under different land uses in mid-subtropical China. Agriculture, Ecosystems and Environment, 2012, 146 (1): 168- 178.
doi: 10.1016/j.agee.2011.10.024 |
62 |
BERGLUND Ö, BERGLUND K. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biology and Biochemistry, 2011, 43 (5): 923- 931.
doi: 10.1016/j.soilbio.2011.01.002 |
63 | 林杉, 冯明磊, 阮雷雷, 等. 三峡库区不同土地利用方式下土壤氧化亚氮排放及其影响因素. 应用生态学报, 2008, 19 (6): 1269- 1276. |
64 | MOSIER A R, KROEZE C. Contribution of agroecosystems to the global atmospheric N2O budget[C]// DESJARDINS R L, KENG J, HAUGEN K. Proceedings of international workshop on reducing N2O emission from agroecosystems. Banff, Canada: Agriculture and Agri-Food Canada Research Branch & Alberta Agriculture, Food and Rural Development, Conservation and Development Branch, 1999: 3-15. |
[1] | 邹宏硕, 傅敏, 肖梦蝶, 盛世雯, 徐平, 陈雪初. 基于多功能耦合的潮汐流稻田湿地生态净化系统研究[J]. 华东师范大学学报(自然科学版), 2024, 2024(1): 58-67. |
[2] | 何晶, 仲启铖, 张桂莲, 王开运, 吴悦琦, 贺贵书, 李德志, 彭娜娜. 崇明东滩围垦区不同土地利用类型对土壤呼吸及其组分的影响[J]. 华东师范大学学报(自然科学版), 2022, 2022(3): 71-81. |
[3] | 游智湧, 刘博林, 刘程, 高灯州. 长江口沉积物固氮过程的温度敏感性及影响因素[J]. 华东师范大学学报(自然科学版), 2022, 2022(3): 101-108. |
[4] | 沈振翔, 刘朝顺. 利用CrIS红外高光谱卫星数据反演大气温湿度廓线的研究[J]. 华东师范大学学报(自然科学版), 2019, 2019(3): 199-210. |
[5] | 白玫, 吴辉. 利用SOM神经网络研究长江口邻近海域海表温度特征[J]. 华东师范大学学报(自然科学版), 2018, 2018(4): 184-194. |
[6] | 顾雅茹, 刘延安, 刘朝顺, 李正龙. 高光谱红外探测仪温湿度廓线在华东地区的真实性检验[J]. 华东师范大学学报(自然科学版), 2018, 2018(3): 146-156. |
[7] | 张伟,蒋锦刚,朱玉碧. 杭州典型城市湿地温度效应的季节和类型差异[J]. 华东师范大学学报(自然科学版), 2015, 2015(4): 123-131. |
[8] | 于 波, 徐学诚. 聚吡咯结构与导电性能的研究[J]. 华东师范大学学报(自然科学版), 2014, 2014(4): 77-87. |
[9] | 卞晓月, 张 健, 王剑平, 吉 淳, 吴一奇. 用于高空气象探测的聚酰亚胺薄膜湿敏电容研究[J]. 华东师范大学学报(自然科学版), 2014, 2014(4): 69-76. |
[10] | 乐笑玮, 崔敏燕, 杨淑贞, 罗 远, 赵明水, 李媛媛. 濒危植物天目铁木种子休眠及萌发特征研究[J]. 华东师范大学学报(自然科学版), 2013, 2013(6): 150-158. |
[11] | 曹春岳. 曹春岳:运用介电泳技术将SnO2纳米球体作为敏感元件的相对湿度传感器特性[J]. 华东师范大学学报(自然科学版), 2012, 2012(5): 16-23,36. |
[12] | 张 弛, 束 炯. 土地利用类型变化对城市大气边界层特征影响的数值模拟[J]. 华东师范大学学报(自然科学版), 2011, 2011(4): 83-93. |
[13] | 陶 芳;黄 燕;高 尚;黄民生;陈 诚. PCR-DGGE法分析温度对A2/O系统硝化菌群结构的影响[J]. 华东师范大学学报(自然科学版), 2009, 2009(5): 53-62. |
[14] | 杨 凯;唐 敏;刘 源;吴阿娜;范群杰. 上海中心城区河流及水体周边小气候效应分析[J]. 华东师范大学学报(自然科学版), 2004, 2004(3): 105-114. |
[15] | 高兰香;沈国土;杨宝成;蔡继光. 热像理论建模中的厚壳船体效应研究[J]. 华东师范大学学报(自然科学版), 2003, 2003(1): 55-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||