华东师范大学学报(自然科学版) ›› 2021, Vol. 2021 ›› Issue (4): 121-133.doi: 10.3969/j.issn.1000-5641.2021.04.014

• 地理学 • 上一篇    下一篇

长江口余水位时空变化的数值模拟和分析

宋云平, 朱建荣*()   

  1. 华东师范大学 河口海岸学国家重点实验室, 上海 200241
  • 收稿日期:2020-10-15 出版日期:2021-07-25 发布日期:2021-07-23
  • 通讯作者: 朱建荣 E-mail:jrzhu@sklec.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金(41676083)

Numerical simulation and analysis of the spatial and temporal variations in residual water levels of the Changjiang Estuary

Yunping SONG, Jianrong ZHU*()   

  1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
  • Received:2020-10-15 Online:2021-07-25 Published:2021-07-23
  • Contact: Jianrong ZHU E-mail:jrzhu@sklec.ecnu.edu.cn

摘要:

应用严格验证过的河口海岸三维数值模型, 模拟了长江口余水位的时空变化, 分析径流、潮汐和风应力对余水位的影响, 揭示了余水位变化的动力机制. 长江河口余水位的空间分布和随时间变化过程主要是受径流影响, 其次是受风的影响. 余水位上游大于下游. 全年最高余水位出现在9月, 徐六泾、崇西、南门、堡镇和深水航道北导堤东端分别为0.861 m、0.754 m、0.629 m、0.554 m和0.298 m. 最低余水位徐六泾和崇西出现在1月, 分别为0.420 m和0.391 m; 南门和堡镇出现在2月, 分别为0.313 m和0.291 m; 深水航道北导堤东端出现在4月, 量值为0.111 m. 北支余水位低于南支, 原因在于进入北支的径流量少. 南港的余水位大于北港, 同一河道内南侧的余水位大于北侧, 原因在于径流受科氏力作用右偏. 对比仅有径流、潮汐和风的数值试验结果, 对余水位作用最大的是径流, 其次是潮汐, 最小的是风. 月平均径流量7月达到最大, 会导致最高余水位, 但期间为东南风, 产生的余水位十分微小. 9月盛行的北风产生向陆的Ekman水体输运, 会引起河口余水位上升, 且期间径流量仍处于高值区, 两者相互作用, 导致整个河口全年最高余水位出现在9月.

关键词: 余水位, 径流, 潮汐, 风, 长江口

Abstract:

Residual water level is an important factor affecting water depth; the water level depends primarily on river discharge, tidal conditions, and wind stress, and it can change significantly with time and space. Studying the temporal and spatial variations in residual water levels—and the respective influencing factors—is of great scientific significance and can be applied to estuarine water level prediction, water resources utilization, seawall design, flood protection, and navigation. In this paper, we used a validated three-dimensional numerical model of the estuary and coast to: simulate the temporal and spatial variations in the residual water levels of the Changjiang Estuary; analyze the impacts of river discharge, tidal conditions, and wind stress on residual water levels; and determine the dynamic mechanisms for its change. The spatial and temporal variations in residual water levels of the Changjiang Estuary is driven primarily by the fact that upstream residual water levels are higher than downstream levels because of runoff force. The highest residual water level appears in September, reaches 0.861, 0.754, 0.629, 0.554, and 0.298 m at Xuliujing, Chongxi, Nanmen, Baozhen, and the easternmost section of the northern dike of the Deepwater Navigation Channel, respectively. The lowest residual water level appears in: January for Xuliujing (0.420 m) and Chongxi (0.391 m), February for Nanmen (0.313 m) and Baozhen (0.291 m), and April for the easternmost section of the northern dike of the Deepwater Navigation Channel (0.111 m). The residual water level in the North Branch is lower than the level in the South Branch, because a small amount of river water flows into the North Branch. The residual water level is higher in the South Channel than the one in the North Channel. Within the South Channel itself, furthermore, the water level is higher on the south side than the north due to the Coriolis force, which makes the water turn to the right. By using numerical experiments to compare the impact of different factors, we found that runoff has the largest impact on residual water levels, tidal conditions have the second largest impact, and wind has minimal impact. The monthly mean river discharge is largest in July, which should lead to the highest residual water level, but southeasterly winds prevail in the same period leading to small residual water levels. The river discharge in September remains high and northerly winds prevail, driving the Ekman water transport landward and resulting in a residual water level rise in the estuary. The interaction between the river discharge and the northeasterly wind makes the residual water level highest in September rather than in July. In conclusion, this study revealed the dynamic mechanism explaining the highest residual water level observed in September.

Key words: residual water level, river discharge, tide, wind, Changjiang Estuary

中图分类号: