华东师范大学学报(自然科学版) ›› 2024, Vol. 2024 ›› Issue (6): 136-150.doi: 10.3969/j.issn.1000-5641.2024.06.012
王余意, 黄晔, 杨静, 丁方方, 何天豪, 李雨珊, 黄琳, 李晔, 刘敏()
收稿日期:
2024-07-25
接受日期:
2024-09-08
出版日期:
2024-11-25
发布日期:
2024-11-29
通讯作者:
刘敏
E-mail:mliu@geo.ecnu.edu.cn
基金资助:
Yuyi WANG, Ye HUANG, Jing YANG, Fangfang DING, Tianhao HE, Yushan LI, Lin HUANG, Ye LI, Min LIU()
Received:
2024-07-25
Accepted:
2024-09-08
Online:
2024-11-25
Published:
2024-11-29
Contact:
Min LIU
E-mail:mliu@geo.ecnu.edu.cn
摘要:
海洋作为河流抗生素的最终归宿, 其在河流到海洋迁移过程的机制和变化规律尚未得到系统研究. 2023年分别于丰水期和枯水期, 在长江口及其近岸海域采集表层水样, 采用固相萃取技术和超高效液相色谱-串联质谱法, 对水样中5类20种抗生素的含量进行测定, 分析其含量水平、时空分异以及潜在的生态风险. 研究结果显示, 20种抗生素检出浓度范围为ND (not detected) ~ 63.32 ng·L–1, 自长江口近口段 (平均108 ng·L–1)—河口段 (平均50 ng·L–1)—口外海滨段 (平均40 ng·L–1)—近岸海域 (平均29 ng·L–1) 呈现出从内陆到海洋的递减趋势. 5类抗生素的含量水平由高到低依次为氯霉素类 > 大环内酯类 > 磺胺类 > 喹诺酮类 > 四环素类, 抗生素检出种类及含量具有明显的季节差异性, 枯水期大环内酯类抗生素含量显著高于丰水期, 而丰水期四环素类含量显著高于枯水期. 研究区水体主要受到磺胺甲恶唑、环丙沙星、金霉素、红霉素、氯霉素、氧氟沙星等抗生素的潜在威胁, 其生态风险不容忽视.
中图分类号:
王余意, 黄晔, 杨静, 丁方方, 何天豪, 李雨珊, 黄琳, 李晔, 刘敏. 长江口及其近岸海域抗生素的时空分异特征与生态风险评估[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 136-150.
Yuyi WANG, Ye HUANG, Jing YANG, Fangfang DING, Tianhao HE, Yushan LI, Lin HUANG, Ye LI, Min LIU. Spatiotemporal differential distribution characteristics and ecological risk assessment of antibiotics in the Yangtze River Estuary and offshore areas[J]. Journal of East China Normal University(Natural Science), 2024, 2024(6): 136-150.
表2
目标化合物的化学性质"
种类 | 名称 | 英文名称 | 简称 | 分子式 | CAS号 |
磺胺类 SAs (sulfonamides) | 磺胺吡啶 | sulfapyridine | SP | C11H11N3O2S | 144-83-2 |
磺胺嘧啶 | sulfadiazine | SDZ | C10H10N4O2S | 68-35-9 | |
磺胺甲恶唑 | sulfamethoxazole | SMX | C10H11N3O3S | 723-46-6 | |
磺胺噻唑 | sulfathiazole | ST | C9H9N3O2S2 | 72-14-0 | |
磺胺间甲基嘧啶 | sulfamerazine | SMR | C11H12N4O2S | 127-79-7 | |
磺胺二甲(基)嘧啶 | sulfamethazine | SMZ | C12H14N4O2S | 57-68-1 | |
磺胺喹恶啉 | sulfaquinoxaline | SQ | C14H12N4O2S | 59-40-5 | |
喹诺酮类 QNs (quinolones) | 诺氟沙星 | norfluxacin | NFX | C16H18FN3O3 | |
环丙沙星 | ciprofloxacin | CIP | C17H18FN3O3 | ||
恩诺沙星 | enrofloxacin | EFX | C19H22FN3O3 | ||
氧氟沙星 | ofloxacin | OFX | C18H20FN3O4 | ||
四环素类 TCs (tetracyclines) | 四环素 | tetracycline | TC | C22H24N2O8 | 60-54-8 |
强力霉素 | doxycycline | DC | C22H24N2O8 | 564-25-0 | |
土霉素 | oxytetracycline | OTC | C22H24N2O9 | 79-57-2 | |
金霉素 | chlortetracycline | CTC | C22H23ClN2O8 | 57-62-5 | |
大环内酯类 MLs (macrolides) | 红霉素 | erythromycin | ETM | C37H67NO13 | 114-07-8 |
罗红霉素 | roxithromycin | RTM | C41H76N2O15 | ||
氯霉素类 CPs (chloramphenicols) | 氟苯尼考 | florfenicol | FF | C12H14Cl2FNO4S | |
甲砜霉素 | thiamphenicol | TAP | C12H15Cl2NO5S | ||
氯霉素 | chloramphenicol | CAP | C11H12Cl2N2O5 | 56-75-7 |
表3
目标化合物的生态风险参数"
抗生素 | 物种类别 | 受试物种 | 效应类型 | 毒性数据/(mg·L–1) | 评估因子 | CPNE/(ng·L–1) | 参考文献 |
SP | Algae | M. macrocopa | L (E) C50 | 1.2 | [ | ||
Daphnia | D. magna | L (E) C50 | 149.3 | [ | |||
Fish | O. latipes | L (E) C50 | > 500 | [ | |||
SDZ | Algae | C. vulgaris. | L (E) C50 | 1.226 | [ | ||
Daphnia | D. magna | L (E) C50 | 212 | [ | |||
Fish | - | L (E) C50 | 50.29 | [ | |||
SMX | Algae | S. leopoliensis | L (E) C50 | 0.027 | 27 | [ | |
Daphnia | C. dubia | L (E) C50 | 0.21 | 210 | [ | ||
Fish | O. latipes | L (E) C50 | 562.5 | [ | |||
ST | Algae | S. leopoliensis | L (E) C50 | 13.1 | 100 | [ | |
Daphnia | D. magna | L (E) C50 | 17 | 100 | [ | ||
Fish | O. latipes | L (E) C50 | 500 | 100 | [ | ||
SMR | Algae | S. vacuolatus | L (E) C50 | 11.9 | [ | ||
Daphnia | D. magna | L (E) C50 | 66.22 | [ | |||
Fish | - | L (E) C50 | 100 | [ | |||
SMZ | Algae | P. subcapitata | NOEC | 0.001 | 100 | [ | |
Daphnia | D. magna | L (E) C50 | 158.8 | [ | |||
Fish | O. latipes | L (E) C50 | > 100 | [ | |||
SQ | Algae | P. subcapitata | L (E) C50 | 0.246 | 246 | [ | |
Daphnia | D. magna | L (E) C50 | 131 | [ | |||
Fish | O. latipes | L (E) C50 | 234.8 | [ | |||
NFX | Algae | M. wesenbergii | L (E) C50 | 0.038 | 38 | [ | |
Daphnia | Daphnid | L (E) C50 | [ | ||||
Fish | P. olivaceus | L (E) C50 | 100 | ECOTOX | |||
CIP | Algae | M. aeruginosa | L (E) C50 | 0.005 | 5 | [ | |
Daphnia | D. magna | L (E) C50 | ECOTOX | ||||
Fish | G. holbrooki | L (E) C50 | 60 | ECOTOX | |||
EFX | Algae | M. aeruginosa | L (E) C50 | 0.049 | 49 | [ | |
Daphnia | D. magna | L (E) C50 | 56.7 | [ | |||
Fish | O. latipes | L (E) C50 | > 100 | [ | |||
OFX | Algae | S. leopoliensis | L (E) C50 | 0.016 | 16 | [ | |
Daphnia | C. dubia | L (E) C50 | 3.13 | [ | |||
Fish | D. rerio | L (E) C50 | > | [ | |||
TC | Algae | M. aeruginosa | L (E) C50 | 0.05 | 50 | [ | |
Daphnia | D. magna | L (E) C50 | 36.56 | [ | |||
Fish | G. holbrooki | NOEC | 5 | 100 | [ | ||
DC | Algae | G. algae | L (E) C50 | 0.32 | 320 | [ | |
Daphnia | C. dubia | L (E) C50 | 0.5 | 500 | [ | ||
Fish | D. rerio | L (E) C50 | 2.658 | [ | |||
OTC | Algae | P. subcapitata | L (E) C50 | 0.17 | 170 | [ | |
Daphnia | D. magna | L (E) C50 | 427.12 | [ | |||
Fish | S. aurata | NOEC | 8 | 100 | [ | ||
CTC | Algae | P. subcapitata | L (E) C50 | 0.002 | 2 | [ | |
Daphnia | D. magna | L (E) C50 | 0.05 | [ | |||
Fish | Danio rerio | L (E) C50 | 36.56 | 12 | [ | ||
ETM | Algae | - | L (E) C50 | 0.02 | 20 | [ | |
Daphnia | C. dubia | L (E) C50 | 0.22 | 220 | [ | ||
Fish | - | L (E) C50 | 61 | [ | |||
RTM | Algae | P. subcapitata | L (E) C50 | 0.01 | 100 | 100 | [ |
Daphnia | D. magna | L (E) C50 | 7.1 | 100 | [ | ||
Fish | O. latipes | L (E) C50 | 50.3 | 100 | [ | ||
FF | Algae | P. subcapitata | L (E) C50 | 2.3 | [ | ||
Daphnia | D. magna | L (E) C50 | 1.9 | [ | |||
Fish | O. mossambicus | L (E) C50 | 50 | [ | |||
TAP | Algae | M. aeruginosa | L (E) C50 | 0.32 | 320 | [ | |
Daphnia | Daphnid | L (E) C50 | ECOTOX | ||||
Fish | - | L (E) C50 | ECOTOX | ||||
CAP | Algae | D. subspicatus | L (E) C50 | 0.13 | 130 | [ | |
Daphnia | Daphnid | L (E) C50 | 72.1 | ECOTOX | |||
Fish | - | L (E) C50 | 38.8 | ECOTOX |
表4
抗生素的含量及检出率"
抗生素 | 范围/(ng·L–1) | 平均值/(ng·L–1) | 检出率 | 标准差 | 范围/(ng·L–1) | 平均值/(ng·L–1) | 检出率 | 标准差 | |
枯水期 | 丰水期 | ||||||||
SMR | 0.03 ~ 0.75 | 0.07 | 100% | 0.13 | 0.23 ~ 12.25 | 0.75 | 100% | 1.89 | |
SMZ | ND ~ 5.41 | 0.64 | 50.00% | 1.83 | 0.07 ~ 4.75 | 1.16 | 100% | 1.07 | |
SMX | 0.18 ~ 19.29 | 5.00 | 100% | 6.00 | 0.35 ~ 23.81 | 7.17 | 100% | 7.18 | |
SP | 0.01 ~ 3.67 | 0.44 | 97.06% | 0.76 | 0.15 ~ 1.80 | 0.66 | 100% | 0.53 | |
ST | ND ~ 1.37 | 0.22 | 88.23% | 0.40 | 0.11 ~ 0.48 | 0.26 | 100% | 0.08 | |
SQ | ND ~ 0.15 | 0.01 | 26.47% | 0.04 | ND ~ 2.52 | 0.53 | 67.65% | 0.55 | |
SDZ | ND ~ 3.35 | 0.57 | 100% | 0.83 | ND ~ 0.75 | 0.26 | 94.12% | 0.18 | |
SAs | 0.52 ~ 29.26 | 6.95 | - | 8.86 | 1.35 ~ 24.53 | 7.92 | - | 9.89 | |
EFX | ND ~ 4.13 | 0.18 | 38.23% | 1.12 | 0.25 ~ 5.29 | 1.11 | 100% | 1.01 | |
OFX | ND ~ 1.72 | 0.50 | 94.12% | 0.44 | 0.27 ~ 4.56 | 1.35 | 100% | 1.14 | |
NFX | ND ~ 8.39 | 0.96 | 94.12% | 1.46 | ND ~ 3.50 | 0.67 | 97.06% | 0.65 | |
CIP | ND ~ 2.64 | 0.63 | 91.18% | 0.54 | 0.22 ~ 8.21 | 1.62 | 100% | 1.53 | |
QNs | 0.58 ~ 15.84 | 2.27 | - | 2.73 | 1.09 ~ 13.86 | 4.03 | - | 3.62 | |
CTC | 0.30 ~ 1.74 | 0.45 | 97.06% | 0.19 | ND ~ 63.32 | 8.71 | 97.06% | 16.77 | |
DC | 0.30 ~ 0.50 | 0.40 | 97.06% | 0.02 | 0.63 ~ 16.08 | 2.16 | 100% | 2.94 | |
TC | 0.32 ~ 1.55 | 0.43 | 97.06% | 0.15 | 0.02 ~ 1.96 | 0.66 | 100% | 0.42 | |
OTC | 0.31 ~ 0.66 | 0.41 | 70.59% | 0.04 | 1.43 ~ 16.21 | 4.98 | 100% | 3.40 | |
TCs | 1.32 ~ 4.34 | 1.69 | - | 0.58 | 3.94 ~ 68.32 | 12.47 | - | 19.26 | |
ETM | 0 ~ 37.79 | 2.38 | 58.82% | 8.17 | 0.73 ~ 4.73 | 1.98 | 100% | 1.01 | |
RTM | 0.17 ~ 4.32 | 0.44 | 100% | 0.75 | 0.02 ~ 1.10 | 0.20 | 100% | 0.24 | |
MLs | 0.17 ~ 42.10 | 2.82 | - | 7.22 | 0.92 ~ 4.74 | 2.17 | - | 0.98 | |
CAP | ND ~ 3.71 | 0.54 | 41.18% | 1.23 | 0.32 ~ 33.36 | 8.15 | 100% | 10.58 | |
FF | ND ~ 56.28 | 11.93 | 73.53% | 20.83 | 0.12 ~ 5.91 | 1.83 | 100% | 1.56 | |
TAP | ND ~ 16.83 | 2.29 | 52.94% | 5.85 | ND ~ 9.13 | 1.38 | 97.06% | 1.65 | |
CPs | ND ~ 76.82 | 14.76 | - | 24.09 | 0.61 ~ 39.02 | 7.23 | - | 12.66 |
1 | 徐永刚, 宇万太, 马强, 等.. 环境中抗生素及其生态毒性效应研究进展. 生态毒理学报, 2015, 10 (3): 11- 27. |
2 | 丁剑楠, 刘舒娇, 邹杰明, 等.. 太湖表层水体典型抗生素时空分布和生态风险评价. 环境科学, 2021, 42 (4): 1811- 1819. |
3 | TISEO K, HUBER L, GILBERT M, et al.. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics, 2020, 9 (12): 918. |
4 | CHEN Y, JIANG C, WANG Y, et al.. Sources, environmental fate, and ecological risks of antibiotics in sediments of Asia’s longest river: A whole-basin investigation. Environmental Science & Technology, 2022, 56 (20): 14439- 14451. |
5 | HALLING-SØRENSEN B, NORS NIELSEN S, LANZKY P F, et al.. Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere, 1998, 36 (2): 357- 393. |
6 | XU J, XU Y, WANG H, et al.. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 2015, 119, 1379- 1385. |
7 | 于娇, 金凯馨, 吴玲玲.. 浅谈抗生素在中国多介质中污染现状研究进展. 应用化工, 2024, 53 (7): 1635- 1640. |
8 | HE K, HAIN E, TIMM A, et al.. Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay. Science of the Total Environment, 2019, 650, 3101- 3109. |
9 | ČELIĆ M, JAÉN-GIL A, BRICEÑO-GUEVARA S, et al.. Extended suspect screening to identify contaminants of emerging concern in riverine and coastal ecosystems and assessment of environmental risks. Journal of Hazardous Materials, 2021, 404, 124102. |
10 | WEI C, WANG Y, ZHANG R, et al.. Spatiotemporal distribution and potential risks of antibiotics in coastal water of Beibu Gulf, South China Sea: Livestock and poultry emissions play essential effect. Journal of Hazardous Materials, 2024, 466, 133550. |
11 | 王新红, 于晓璇, 王思权, 等.. 河口-近海环境新污染物的环境过程、效应与风险. 环境科学, 2022, 43 (11): 4810- 4821. |
12 | LI H.. Management of coastal mega-cities: A new challenge in the 21st century. Marine Policy, 2003, 27 (4): 333- 337. |
13 | LU S, WANG J, WANG B, et al.. Comprehensive profiling of the distribution, risks and priority of pharmaceuticals and personal care products: A large-scale study from rivers to coastal seas. Water Research, 2023, 230, 119591. |
14 | DU J, ZHAO H, LIU S, et al.. Antibiotics in the coastal water of the South Yellow Sea in China: Occurrence, distribution and ecological risks. Science of the Total Environment, 2017, 595, 521- 527. |
15 | HAN Q F, SONG C, SUN X, et al.. Spatiotemporal distribution, source apportionment and combined pollution of antibiotics in natural waters adjacent to mariculture areas in the Laizhou Bay, Bohai Sea. Chemosphere, 2021, 279, 130381. |
16 | WU R, RUAN Y, HUANG G, et al.. Source apportionment, hydrodynamic influence, and environmental stress of pharmaceuticals in a microtidal estuary with multiple outlets in South China. Environmental Science & Technology Journal, 2022, 56 (16): 11374- 11386. |
17 | LI F, WEN D, BAO Y, et al.. Insights into the distribution, partitioning and influencing factors of antibiotics concentration and ecological risk in typical bays of the East China Sea. Chemosphere, 2022, 288, 132566. |
18 | 徐双全.. 长江河口河海分界的探讨. 中国水利, 2008, (16): 37- 40. |
19 | 晏彩霞. 长江口滨岸水中胶体对新型有机污染物环境行为的影响研究 [D]. 上海: 华东师范大学, 2015. |
20 | 郭行磐. 长江口滨岸水环境中抗生素抗性基因的赋存特征 [D]. 上海: 华东师范大学, 2019. |
21 | LI F, CHEN L, BAO Y, et al.. Identification of the priority antibiotics based on their detection frequency, concentration, and ecological risk in urbanized coastal water. Science of the Total Environment, 2020, 747, 141275. |
22 | VAN LEEUWEN K. Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No1488/94 on risk assessment for existing substances Part Ⅱ [R]. European Commission Joint Research Centre, 1996: 1-337. |
23 | 刘昔, 王智, 王学雷, 等.. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价. 环境科学, 2019, 40 (5): 2094- 2100. |
24 | BENGTSSON-PALME J, LARSSON D G J.. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 2016, 86, 140- 149. |
25 | PARK S, CHOI K.. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology, 2008, 17 (6): 526- 538. |
26 | BARAN W, SOCHACKA J, WARDAS W.. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere, 2006, 65 (8): 1295- 1299. |
27 | DE LIGUORO M, FIORETTO B, POLTRONIERI C, et al.. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere, 2009, 75 (11): 1519- 1524. |
28 | GROS M, PETROVIC M, GINEBREDA A, et al. Sources, occurrence, and environmental risk assessment of pharmaceuticals in the Ebro River Basin [M]// BARCELÓ D, PETROVIC M. The Ebro River Basin. [S. l.]: Springer Berlin Heidelberg, 2010: 209-237. |
29 | FERRARI B, MONS R, VOLLAT B, et al.. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment?. Environmental Toxicology and Chemistry, 2004, 23 (5): 1344- 1354. |
30 | ISIDORI M, LAVORGNA M, NARDELLI A, et al.. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Science of the Total Environment, 2005, 346 (1): 87- 98. |
31 | KIM Y, CHOI K, JUNG J, et al.. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International, 2007, 33 (3): 370- 375. |
32 | REN J, SHI H, LIU J, et al.. Occurrence, source apportionment and ecological risk assessment of thirty antibiotics in farmland system. Journal of Environmental Management, 2023, 335, 117546. |
33 | BIAŁK-BIELIŃSKA A, STOLTE S, ARNING J, et al.. Ecotoxicity evaluation of selected sulfonamides. Chemosphere, 2011, 85 (6): 928- 933. |
34 | KIM H Y, YU S H, LEE M J, et al.. Radiolysis of selected antibiotics and their toxic effects on various aquatic organisms. Radiation Physics and Chemistry, 2009, 78 (4): 267- 272. |
35 | 张培旗, 李健, 刘淇, 等.. 复方新诺明对中国对虾毒性的初步研究. 海洋水产研究, 2006, (1): 28- 34. |
36 | YANG L, YING G, SU H, et al.. Growth‐inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environmental Toxicology and Chemistry, 2008, 27 (5): 1201- 1208. |
37 | XU Y, GUO C, LV J, et al.. Spatiotemporal profile of tetracycline and sulfonamide and their resistance on a catchment scale. Environmental Pollution, 2018, 241, 1098- 1105. |
38 | ROBINSON A A, BELDEN J B, LYDY M J.. Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environmental Toxicology and Chemistry, 2005, 24 (2): 423- 30. |
39 | BAI Y, MENG W, XU J, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China [J]. Environmental Science: Processes & Impacts, 2014, 16(3): 586-593. |
40 | NUNES B, ANTUNES S C, GOMES R, et al.. Acute effects of tetracycline exposure in the freshwater fish gambusia holbrooki: antioxidant effects, neurotoxicity and histological alterations. Archives of Environmental Contamination and Toxicology, 2015, 68 (2): 371- 381. |
41 | YAN Z, YANG H, DONG H, et al.. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion. Environmental Pollution, 2018, 239, 223- 232. |
42 | JIANG Y, XU C, WU X, et al.. Occurrence, seasonal variation and risk assessment of antibiotics in Qingcaosha Reservoir. Water, 2018, 10 (2): 115. |
43 | GUARDIOLA F A, CEREZUELA R, MESEGUER J, et al.. Modulation of the immune parameters and expression of genes of gilthead seabream (Sparus aurata L.) by dietary administration of oxytetracycline. Aquaculture, 2012, 334/337, 51- 57. |
44 | LÜTZHØFT H C H, HALLING-SØRENSEN B, JØRGENSEN S E.. Algal toxicity of antibacterial agents applied in Danish fish farming. Archives of Environmental Contamination and Toxicology, 1999, 36 (1): 1- 6. |
45 | KIM J, PARK J, KIM P G, et al.. Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna. Ecotoxicology, 2010, 19 (4): 662- 669. |
46 | KOEYPUDSA W, YAKUPITIYAGE A, TANGTRONGPIROS J.. The fate of chlortetracycline residues in a simulated chicken–fish integrated farming systems. Aquaculture Research, 2005, 36, 570- 577. |
47 | DE LIGUORO M, DI LEVA V, GALLINA G, et al.. Evaluation of the aquatic toxicity of two veterinary sulfonamides using five test organisms. Chemosphere, 2010, 81 (6): 788- 793. |
48 | SANDERSON H, JOHNSON D J, WILSON C J, et al.. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicology Letters, 2003, 144 (3): 383- 395. |
49 | GROS M, PETROVIĆ M, GINEBREDA A, et al.. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International, 2010, 36 (1): 15- 26. |
50 | MARTINS A, GUIMARÃES L, GUILHERMINO L.. Chronic toxicity of the veterinary antibiotic florfenicol to Daphnia magna assessed at two temperatures. Environmental Toxicology and Pharmacology, 2013, 36 (3): 1022- 1032. |
51 | REDA R M, IBRAHIM R E, AHMED E N G, et al.. Effect of oxytetracycline and florfenicol as growth promoters on the health status of cultured Oreochromis niloticus. Egyptian Journal of Aquatic Research, 2013, 39 (4): 241- 248. |
52 | SANDERSON H, THOMSEN M.. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action. Toxicology Letters, 2009, 187 (2): 84- 93. |
53 | 张芊芊. 中国流域典型新型有机污染物排放量估算、多介质归趋模拟及生态风险评估 [D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2015. |
54 | LI S, SHI W, LIU W, et al.. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Science of the Total Environment, 2018, 615, 906- 917. |
55 | 李菲菲. 受污染近海中抗生素的分布、生态风险及优先控制策略 [D]. 北京: 中国地质大学, 2020. |
56 | 贺莹莹. 长江口水体极性有机污染物存在水平及生态风险评价 [D]. 辽宁 大连: 大连理工大学, 2015. |
57 | 张悦.. 近海流域溶解氧的影响因素分析. 中国资源综合利用, 2023, 41 (11): 111- 113. |
58 | 何蕴琦, 陈弘丽.. 珠三角典型河道49种抗生素污染现状及风险评估. 中国环境监测, 2024, 40 (1): 173- 182. |
59 | HU J, LI S, ZHANG W, et al.. Animal production predominantly contributes to antibiotic profiles in the Yangtze River. Water Research, 2023, 242, 120214. |
60 | ZHANG Q Q, YING G G, PAN C G, et al.. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 2015, 49 (11): 6772- 6782. |
61 | 余军楠, 方昊, 胡建林, 等.. 江苏四个典型克氏原螯虾养殖区抗生素污染特征与生态风险评估. 农业环境科学学报, 2020, 39 (2): 386- 393. |
62 | 周柯举. 集约化海水养殖区抗生素的污染特征 [D]. 福建 厦门: 厦门大学, 2022. |
63 | BEN W, PAN X, QIANG Z. Occurrence and partition of antibiotics in the liquid and solid phases of swine wastewater from concentrated animal feeding operations in Shandong Province, China [J]. Environmental Science: Processes & Impacts, 2013, 15(4): 870-875. |
64 | 陈磊, 韩迁, 赖承钺, 等.. 成都市水源地磺胺类抗生素分布特征及风险评估. 环境科学导刊, 2024, 43 (3): 71- 76. |
65 | 袁喆, 彭茂民, 刘丽, 等.. 动物源性食品中氯霉素类药物残留分析方法研究进展. 食品与机械, 2024, 40 (1): 219- 225. |
66 | WANG Z, CHEN Q, ZHANG J, et al.. Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze River. Journal of Environmental Management, 2019, 244, 13- 22. |
67 | TIAN L, XU X, ZHANG Z, et al.. A comprehensive contamination investigation of Bohai Bay seawater: Antibiotics occurrence, distribution, ecological risks and their interactive factors. International Journal of Environmental Research and Public Health, 2023, 20 (2): 1599. |
[1] | 胡雯桉, 沈城, 孙慧伦, 王强, 刘敏. 抗生素与抗性基因在畜禽养殖中的环境影响及生态风险[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 151-160. |
[2] | 关铭茵, 刘欣然, 刘敏, 杨静, 谢泽莹, 张庆玲, 李倩. 典型场地土壤剖面中抗生素及其抗性基因的分布特征[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 74-85. |
[3] | 尹国宇, 郑栋升, 李晔, 黄晔, 刘敏. 中国河口沉积物抗生素及抗性基因地理格局和驱动机制[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 86-98. |
[4] | 陈灏, 何贤强, 李润, 曹芳. 基于机器学习的长江口表层水体溶解有机碳遥感反演研究[J]. 华东师范大学学报(自然科学版), 2024, 2024(4): 123-136. |
[5] | 房易玄, 李茂田, 刘晓强, 宋艳, 林沐东, 姚慧锟. 福建三沙湾表层沉积物重金属分布对网箱养殖的响应[J]. 华东师范大学学报(自然科学版), 2024, 2024(1): 144-156. |
[6] | 游智湧, 刘博林, 刘程, 高灯州. 长江口沉积物固氮过程的温度敏感性及影响因素[J]. 华东师范大学学报(自然科学版), 2022, 2022(3): 101-108. |
[7] | 宋云平, 朱建荣. 长江口余水位时空变化的数值模拟和分析[J]. 华东师范大学学报(自然科学版), 2021, 2021(4): 121-133. |
[8] | 朱宜平. 长江口青草沙水域外海正面盐水入侵特点分析[J]. 华东师范大学学报(自然科学版), 2021, 2021(2): 21-29. |
[9] | 葛灿, 张卫国. 基于粒级分离的长江口及邻近陆架沉积物磁性特征及其环境意义[J]. 华东师范大学学报(自然科学版), 2021, 2021(2): 30-41. |
[10] | 朱宜平, 李小飞, 梁霞. 上海青草沙水库表层沉积物重金属含量水平及其生态风险评价[J]. 华东师范大学学报(自然科学版), 2021, 2021(2): 54-62. |
[11] | 杨正东, 朱建荣, 宋云平, 顾靖华. 长江口余水位时空变化及其成因[J]. 华东师范大学学报(自然科学版), 2021, 2021(2): 12-20. |
[12] | 王话翔, 初晓冶, 陈莹, 徐露, 杨凯. 特大城市地表水环境溶解氧时空分布特征探究[J]. 华东师范大学学报(自然科学版), 2020, 2020(6): 154-163. |
[13] | 张梦霞, 郑艳玲, 尹国宇, 董宏坡, 韩平, 高娟, 刘程, 常永凯, 刘敏, 侯立军. 纳米银对河口潮滩硝酸盐异化还原成铵过程的影响[J]. 华东师范大学学报(自然科学版), 2020, 2020(3): 68-77. |
[14] | 李仪, 张炎, 张雅婷, 何品刚, 王清江. 微萃取超高效液相色谱检测磺胺类药物的研究[J]. 华东师范大学学报(自然科学版), 2019, 2019(2): 156-163. |
[15] | 王浩斌, 杨世伦, 杨海飞. 台风对长江口表层悬沙浓度的影响[J]. 华东师范大学学报(自然科学版), 2019, 2019(2): 195-208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||