1 |
NADIMPALLI M L, MARKS S J, MONTEALEGRE M C, et al.. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nature Microbiology, 2020, (5): 787- 795.
|
2 |
ZHENG D, YIN G, LIU M, et al.. Global biogeography and projection of soil antibiotic resistance genes. Science Advances, 2022, 8 (46): abq8015.
|
3 |
O’NEILL J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations [M]. London: Review on Antimicrobial Resistance, 2014: 1-16.
|
4 |
DCOSTA V M, KING C E, KALAN L, et al.. Antibiotic resistance is ancient. Nature, 2011, 477, 457- 461.
|
5 |
BAKKEREN E, DIARD M, HARDT W D.. Evolutionary causes and consequences of bacterial antibiotic persistence. Nature Reviews Microbiology, 2020, 18, 479- 490.
|
6 |
KLEIN E Y, VAN BOECKEL T P, MARTINEZ E M, et al.. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3463- E3470.
|
7 |
VAN BOECKEL T P, PIRES J, SILVESTER R, et al.. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 2019, 365, 6459.
|
8 |
HENDRIKSEN R S, MUNK P, NJAGE P, et al.. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 2019, (10): 1- 12.
|
9 |
HAMIWE T, KOCK M M, MAGWIRA C A, et al.. Occurrence of enterococci harbouring clinically important antibiotic resistance genes in the aquatic environment in Gauteng, South Africa. Environmental Pollution, 2019, 245, 1041- 1049.
|
10 |
PÄRNÄNEN K M M, NARCISO-DA-ROCHA C, KNEIS D, et al.. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science Advances, 2019, (5): eaau9124.
|
11 |
BAKKEREN E, HUISMAN J S, FATTINGER S A, et al.. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature, 2019, 573, 276- 280.
|
12 |
DELGADO-BAQUERIZO M, GUERRA C A, CANO-DÍAZ C, et al.. The proportion of soil-borne pathogens increases with warming at the global scale. Nature Climate Change, 2020, (10): 550- 554.
|
13 |
ZHU Y G, ZHAO Y, LI B, et al.. Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2017, (2): 1- 7.
|
14 |
ZHANG Q Q, YING G G, PAN C G, et al.. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 2015, 49 (11): 6772- 6782.
|
15 |
LYU M, LUAN X, LIAO C, et al.. Human impacts on polycyclic aromatic hydrocarbon distribution in Chinese intertidal zones. Nature Sustainability, 2020, 3 (10): 878- 884.
|
16 |
SUN D, TANG X, ZHAO M, et al.. Distribution and diversity of comammox nitrospira in coastal wetlands of China. Frontiers in Microbiology, 2020, 11, 589268.
|
17 |
GAO D, LI X, LIN X, et al.. Soil dissimilatory nitrate reduction processes in the Spartina alterniflora invasion chronosequences of a coastal wetland of southeastern China: Dynamics and environmental implications. Plant and Soil, 2017, (3): 383- 399.
|
18 |
HOU L, WANG R, YIN G, et al. Nitrogen fixation in the intertidal sediments of the Yangtze Estuary: Occurrence and environmental implications [J]. Journal of Geophysical Research Biogeosciences, 2018, 123: 936-944.
|
19 |
JIANG Y, YIN G, HOU L, et al. Variations of dissimilatory nitrate reduction processes along reclamation chronosequences in Chongming Island , China [J]. Soil & Tillage Research, 2021, 206(1): 104815.
|
20 |
YIN G, HOU L, ZONG H, et al.. Denitrification and anaerobic ammonium oxidization across the sediment–water interface in the hypereutrophic ecosystem, Jinpu Bay, in the Northeastern Coast of China. Estuaries and Coasts, 2015, 38, 211- 219.
|
21 |
SHI H, YANG Y, LIU M, et al.. Occurrence and distribution of antibiotics in the surface sediments of the Yangtze Estuary and nearby coastal areas. Marine Pollution Bulletin, 2014, 83 (1): 317- 323.
|
22 |
LIU L, SU J Q, GUO Y, et al.. Large-scale biogeographical patterns of bacterial antibiotic resistome in the waterbodies of China. Environment International, 2018, 117, 292- 299.
|
23 |
CHEN Q L, AN X L, LI H, et al.. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil?. Soil Biology and Biochemistry, 2017, 114, 229- 237.
|
24 |
AN X L, SU J Q, LI B, et al.. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environment International, 2018, 117, 146- 153.
|
25 |
SUN J, LIAO X P, D’SOUZA A W, et al.. Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nature Communications, 2020, (11): 1- 11.
|
26 |
JIAO S, LIU Z, LIN Y, et al.. Bacterial communities in oil contaminated soils: Biogeography and co-occurrence patterns. Soil Biology and Biochemistry, 2016, 98, 64- 73.
|
27 |
WU L, NING D, ZHANG B, et al.. Author correction: Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4 (12): 2579.
|
28 |
DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, et al.. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 2016, (7): 1- 8.
|
29 |
GUO X P, LIU X, NIU Z S, et al.. Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. Environmental Pollution, 2018, 242, 576- 584.
|
30 |
LU X M, LU P Z.. Seasonal variations in antibiotic resistance genes in estuarine sediments and the driving mechanisms. Journal of Hazardous Materials, 2020, 383, 121164.
|
31 |
CHEN B, LIANG X, HUANG X, et al.. Differentiating anthropogenic impacts on ARGs in the Pearl River Estuary by using suitable gene indicators. Water Research, 2013, 47 (8): 2811- 2820.
|
32 |
LU J, ZHANG Y, WU J, et al.. Occurrence and spatial distribution of antibiotic resistance genes in the Bohai Sea and Yellow Sea areas, China. Environmental Pollution, 2019, 252, 450- 460.
|
33 |
LU J, ZHANG Y, WU J.. Continental-scale spatio-temporal distribution of antibiotic resistance genes in coastal waters along coastline of China. Chemosphere, 2020, 247, 125908.
|
34 |
ZHENG D, YIN G, LIU M, et al.. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Science of the Total Environment, 2021, 777, 146009.
|
35 |
FRESIA P, ANTELO V, SALAZAR C, et al.. Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome, 2019, (7): 1- 9.
|
36 |
CHEN C Q, ZHENG L, ZHOU J L, et al.. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China. Science of the Total Environment, 2017, 580, 1175- 1184.
|
37 |
GAO Q, LI Y, QI Z, et al.. Diverse and abundant antibiotic resistance genes from mariculture sites of China’s coastline. Science of the Total Environment, 2018, 630, 117- 125.
|
38 |
MUZIASARI W I, PÄRNÄNEN K, JOHNSON T A, et al.. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiology Ecology, 2016, 92, fiw052.
|
39 |
SU J Q, AN X L, LI B, et al.. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 2017, (5): 1- 15.
|
40 |
GUO X, ZHAO S, CHEN Y, et al.. Antibiotic resistance genes in sediments of the Yangtze Estuary: From 2007 to 2019. Science of the Total Environment, 2020, 744, 140713.
|
41 |
PEHRSSON E C, TSUKAYAMA P, PATEL S, et al.. Interconnected microbiomes and resistomes in low-income human habitats. Nature, 2016, 533, 212- 216.
|
42 |
MACFADDEN D R, MCGOUGH S F, FISMAN D, et al.. Antibiotic resistance increases with local temperature. Nature Climate Change, 2018, (8): 510- 514.
|
43 |
ZHU D, MA J, LI G, et al.. Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens. The ISME Journal, 2022, 16 (2): 615.
|
44 |
BAHRAM M, HILDEBRAND F, FORSLUND S K, et al.. Structure and function of the global topsoil microbiome. Nature, 2018, 560, 233- 237.
|
45 |
DUNIVIN T K, SHADE A.. Community structure explains antibiotic resistance gene dynamics over a temperature gradient in soil. FEMS Microbiology Ecology, 2018, 94 (3): 1- 9.
|
46 |
SPANÒ S, GALÁN J E.. A Rab32-dependent pathway contributes to Salmonella typhi host restriction. Science, 2012, 338, 960- 963.
|
47 |
DU S, SHEN J P, HU H W, et al.. Large-scale patterns of soil antibiotic resistome in Chinese croplands. Science of the Total Environment, 2020, 712, 136418.
|
48 |
REVERTER M, SARTER S, CARUSO D, et al.. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nature Communications, 2020, (11): 1- 8.
|
49 |
COLLIGNON P, BEGGS J J, WALSH T R, et al.. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. Lancet Planetary Health, 2018, (2): e398- e405.
|
50 |
王芳, 豆庆圆, 付玉豪, 等.. 土壤中有机肥源抗生素抗性基因环境归趋与风险管理研究进展. 农业环境科学学报, 2022, (12): 2563- 2576.
|
51 |
武晨, 黄凤莲, 刘新刚, 等.. 环洞庭湖土壤抗生素抗性基因分布和潜在风险. 中国环境科学, 2024, 44 (3): 1575- 1583.
|