华东师范大学学报(自然科学版) ›› 2021, Vol. 2021 ›› Issue (4): 90-98.doi: 10.3969/j.issn.1000-5641.2021.04.011
袁育鑫1,2,3,4, 刘佳敏1,2,3,4, 潘玲1,2,3,4, 王丽红1,2,3,4, 张雪俐1,2,3,4, 黄民生1,2,3,4,*()
收稿日期:
2020-11-16
出版日期:
2021-07-25
发布日期:
2021-07-23
通讯作者:
黄民生
E-mail:mshuang@des.ecnu.edu.cn
基金资助:
Yuxin YUAN1,2,3,4, Jiamin LIU1,2,3,4, Ling PAN1,2,3,4, Lihong WANG1,2,3,4, Xueli ZHANG1,2,3,4, Minsheng HUANG1,2,3,4,*()
Received:
2020-11-16
Online:
2021-07-25
Published:
2021-07-23
Contact:
Minsheng HUANG
E-mail:mshuang@des.ecnu.edu.cn
摘要:
总结了不同类型纳米材料对藻华控制的作用机制最新研究进展, 系统分析了环境因子对纳米材料调控营养盐迁移转化以及细胞毒性过程的影响. 并在此基础上对纳米材料的固定化研究提出展望, 以期实现纳米材料功能化和对其环境风险的精确管控, 为藻华治理提供新的解决思路.
中图分类号:
袁育鑫, 刘佳敏, 潘玲, 王丽红, 张雪俐, 黄民生. 纳米材料在藻华控制方面的应用与研究进展[J]. 华东师范大学学报(自然科学版), 2021, 2021(4): 90-98.
Yuxin YUAN, Jiamin LIU, Ling PAN, Lihong WANG, Xueli ZHANG, Minsheng HUANG. A review of applications and research progress on the use of nanoparticles for the inhibition of harmful algal bloom[J]. Journal of East China Normal University(Natural Science), 2021, 2021(4): 90-98.
1 |
ZHANG W Z, SHEN H, ZHANG J, et al. Physiological differences between free-floating and periphytic filamentous algae, and specific submerged macrophytes induce proliferation of filamentous algae: A novel implication for lake restoration. Chemosphere, 2020, 239, 124702.
doi: 10.1016/j.chemosphere.2019.124702 |
2 |
SHEVLIN D, O’BRIEN N, CUMMINS E. Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes. Sci Total Environ, 2018, 621, 1033- 1046.
doi: 10.1016/j.scitotenv.2017.10.123 |
3 | DONAGHAY P L, OSBORN T R. Toward a theory of biological-physical control of harmful algal bloom dynamics and impacts. Limnology and Oceanography, 1997, 42 (5): 1283- 1296. |
4 |
GUILDFORD S J, HECKY R E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship?. Limnology and Oceanography, 2000, 45 (6): 1213- 1223.
doi: 10.4319/lo.2000.45.6.1213 |
5 | 杭嘉祥, 李法云, 梁晶, 等. 镁改性芦苇生物炭对水环境中磷酸盐的吸附特性. 生态环境学报, 2020, 29 (6): 1235- 1244. |
6 | SHIN J, LEE Y G, LEE S H, et al. Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds. Journal of Hazardous Materials, 2020, 400, 102- 123. |
7 |
ZHU D C, CHEN Y Q, YANG H P, et al. Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. Chemosphere, 2020, 247, 125847.
doi: 10.1016/j.chemosphere.2020.125847 |
8 | 曹丹. 绿色合成纳米Fe3O4的改性及用于水中氨氮和磷的去除 [D]. 福州: 福建师范大学, 2016. |
9 | 王慧. 铁氧化物及其胡敏酸复合体对磷酸盐的吸附研究 [D]. 武汉: 华中农业大学, 2015. |
10 |
ACELAS N Y, MARTIN B D, LOPEZ D, et al. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 2015, 119, 1353- 1360.
doi: 10.1016/j.chemosphere.2014.02.024 |
11 | 刘婷娇. 镁铁类水滑石去除水中磷和藻及其资源化利用 [D]. 湖南 湘潭: 湘潭大学, 2019. |
12 | 卢松花. 水体中共存组分对U(Ⅵ)在钛酸盐材料上的作用机制影响 [D]. 合肥: 中国科学技术大学, 2019. |
13 | 李元梓. 负载镧复合纳米材料的制备及其用于水体除磷性能研究 [D]. 南京: 南京理工大学, 2019. |
14 | 贺银海. 沸石同步脱氮除磷功能调控及机理研究 [D]. 北京: 北京科技大学, 2018. |
15 |
PERLOVA O V, DZYAZKO Y S, PALCHIK A V, et al. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(Ⅵ) compounds from water. Applied Nanoscience, 2020, 10 (12): 4591- 4602.
doi: 10.1007/s13204-020-01313-1 |
16 | XU Q Y, LI W P, MA L, et al. Simultaneous removal of ammonia and phosphate using green synthesized iron oxide nanoparticles dispersed onto zeolite. Science of the Total Environment, 2020, 703 (9): 135002. |
17 |
KOH K Y, ZHANG S, CHEN J P. Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: Material synthesis and optimization, and demonstration of excellent performance. Chemical Engineering Journal, 2020, 380, 122153.
doi: 10.1016/j.cej.2019.122153 |
18 |
SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Research, 2013, 47 (14): 5018- 5026.
doi: 10.1016/j.watres.2013.05.044 |
19 |
WU K, LI Y, LIU T, et al. Evaluation of the adsorption of ammonium-nitrogen and phosphate on a granular composite adsorbent derived from zeolite. Environmental Science and Pollution Research, 2019, 26 (17): 17632- 17643.
doi: 10.1007/s11356-019-05069-2 |
20 |
TARN D, ASHLEY C E, XUE M, et al. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Accounts of Chemical Research, 2013, 46 (3): 792- 801.
doi: 10.1021/ar3000986 |
21 |
BEIGY M R, RASEKH B, YAZDIAN F, et al. High nitrate removal by starch-stabilized Fe-0 nanoparticles in aqueous solution in a controlled system. Engineering in Life Sciences, 2018, 18 (3): 187- 195.
doi: 10.1002/elsc.201700127 |
22 | 马静. 生物炭负载纳米零价铁对地下水硝酸盐氮去除及氮气选择性转化性能研究 [D]. 西安: 西北大学, 2019. |
23 |
DAS R K, WANG Y, VASILYEVA S V, et al. Extraordinary hydrogen evolution and oxidation reaction activity from carbon nanotubes and graphitic carbons. Acs Nano, 2014, 8 (8): 8447- 8456.
doi: 10.1021/nn5030225 |
24 | 张婉. 纳米氧化锌及其复合材料光催化去除水中低浓度氨氮研究 [D]. 南京: 南京理工大学, 2017. |
25 | CHEN Y F, WANG Q, ZHAO S, et al. Removal of nutrients and emission of nitrous oxide during simultaneous nitrification, denitrification and phosphorus removal process with metal ions addition. International Biodeterioration & Biodegradation, 2019, 142, 143- 150. |
26 | MENG X Y, CHEN Z F, WANG C, et al. Development of a three-dimensional electrochemical system using a blue TiO2/SnO2-Sb2O3 anode for treating low-ionic-strength wastewater . Environmental Science & Technology, 2019, 53 (23): 13784- 13793. |
27 |
AMATERZ E, TARA A, BOUDDOUCH A, et al. Hierarchical flower-like SrHPO4 electrodes for the photoelectrochemical degradation of Rhodamine B . Journal of Applied Electrochemistry, 2020, 50 (5): 569- 581.
doi: 10.1007/s10800-020-01416-1 |
28 |
ZHANG S H, YOU J P, KENNES C, et al. Current advances of VOCs degradation by bioelectrochemical systems: A review. Chemical Engineering Journal, 2018, 334, 2625- 2637.
doi: 10.1016/j.cej.2017.11.014 |
29 | WANG Y, FU W, XUE P. Degradation of trace oil in water using magnetic immobilized microorganism. Chemical Engineering (China), 2017, 45 (9): 7- 12. |
30 |
LIU S Q, WANG C, HOU J, et al. Effects of Ag NPs on denitrification in suspended sediments via inhibiting microbial electron behaviors. Water Research, 2020, 171, 115436.
doi: 10.1016/j.watres.2019.115436 |
31 | ZHAO J, DAI Y H, WANG Z Y, et al. Toxicity of GO to freshwater algae in the presence of Al2O3 particles with different morphologies: Importance of heteroaggregation . Environmental Science & Technology, 2018, 52 (22): 13448- 13456. |
32 | 贾云婷. 磁性MOFs纳米材料的制备及除藻特性研究 [D]. 石家庄: 河北科技大学, 2019. |
33 | REZAYIAN M, NIKNAM V, EBRAHIMZADEH H. Oxidative damage and antioxidative system in algae. Toxicology Reports, 2019, (6): 1309- 1313. |
34 | 王雅学. 纳米Fe2O3与四环素对羊角月牙藻的毒性效应研究 [D]. 石家庄: 河北科技大学, 2019. |
35 |
WANG D X, AO Y H, WANG P F. Effective inactivation of microcystis aeruginosa by a novel Z-scheme composite photocatalyst under visible light irradiation. Science of the Total Environment, 2020, 746, 141149.
doi: 10.1016/j.scitotenv.2020.141149 |
36 | 武鹏鹏. Nano TiO2和土霉素对斜生栅藻的毒性效应研究 [D]. 石家庄: 河北科技大学, 2019. |
37 |
GAO X, ZHOU K, ZHANG L, et al. Distinct effects of soluble and bound exopolymeric substances on algal bioaccumulation and toxicity of anatase and rutile TiO2 nanoparticles . Environmental Science: Nano, 2018, 5 (3): 720- 729.
doi: 10.1039/C7EN01176H |
38 | 陈喜. 水环境中纳米银颗粒与莱茵衣藻的交互作用研究 [D]. 山东 泰安: 山东农业大学, 2019. |
39 |
FATHI P, SADEGHI G, HOSSEINI M J, et al. Effects of copper oxide nanoparticles on the Chlorella algae in the presence of humic acid. Sn Applied Sciences, 2020, 2 (2): 11.
doi: 10.1007%2Fs42452-019-1812-6 |
40 | 马偲. 水中纳米颗粒的自团聚及与藻细胞的异团聚 [D]. 杭州: 浙江大学, 2014. |
41 |
MUNK M, BRANDAO H M, NOWAK S, et al. Direct and indirect toxic effects of cotton-derived cellulose nanofibres on filamentous green algae. Ecotoxicology and Environmental Safety, 2015, 122, 399- 405.
doi: 10.1016/j.ecoenv.2015.09.001 |
42 |
曹丽, 吕天平, 贺京城, 等. 纳米TiO2光催化去除水华藻类的研究进展 . 工业催化, 2019, 27 (4): 17- 21.
doi: 10.3969/j.issn.1008-1143.2019.04.004 |
43 | 程晓燕. 纳米BiOBr对羊角月牙藻的毒性效应研究 [D]. 河南 南阳: 南阳师范学院, 2019. |
44 |
YANG Y Y, HOU J, WANG P F, et al. The effects of extracellular polymeric substances on magnetic iron oxide nanoparticles stability and the removal of microcystin-LR in aqueous environments. Ecotoxicology and Environmental Safety, 2018, 148, 89- 96.
doi: 10.1016/j.ecoenv.2017.10.022 |
45 |
SHEVLIN D, O'BRIEN N, CUMMINS E. Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes. Science of the Total Environment, 2018, 621, 1033- 1046.
doi: 10.1016/j.scitotenv.2017.10.123 |
46 |
LEI C, ZHANG L, YANG K, et al. Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging. Environmental Pollution, 2016, 218, 505- 512.
doi: 10.1016/j.envpol.2016.07.030 |
47 |
WANG B Q, AN B H, LIU Y, et al. Selective reduction of nitrate into nitrogen at neutral pH range by iron/copper bimetal coupled with formate/ferric ion and ultraviolet radiation. Separation and Purification Technology, 2020, 248, 117061.
doi: 10.1016/j.seppur.2020.117061 |
48 | 车兴凯. 纳米氧化铜对藻类毒害的机理研究 [D]. 山东 泰安: 山东农业大学, 2019. |
49 |
FAURE B, SALAZAR-ALVAREZ G, BERGSTROM L. Hamaker constants of iron oxide nanoparticles. Langmuir, 2011, 27 (14): 8659- 8664.
doi: 10.1021/la201387d |
50 |
VERMA A, STELLACCI F. Effect of surface properties on nanoparticle-cell interactions. Small, 2010, 6 (1): 12- 21.
doi: 10.1002/smll.200901158 |
51 | 罗潇宇, 任垠安, 高浩杰, 等. 2种类型多壁碳纳米管对蛋白核小球藻的毒理研究. 生态毒理学报, 2018, 13 (6): 333- 341. |
52 | 赵新仕. Nano-BiOCl对羊角月牙藻的毒性效应—氧空位的影响 [D]. 河南 南阳: 南阳师范学院, 2019. |
53 | 辛元元, 陈金媛, 程艳红, 等. 纳米TiO2与重金属Cd对铜绿微囊藻生物效应的影响 . 生态毒理学报, 2013, 8 (1): 23- 28. |
54 | 李雅洁, 王静, 崔益斌, 等. 纳米氧化锌和二氧化钛对斜生栅藻的毒性效应. 农业环境科学学报, 2013, 32 (6): 1122- 1127. |
55 | 李丽丽. 硅藻土负载改性N-TiO2纳米材料可见光降解水中Microcystin-LR研究 [D]. 福州: 福建师范大学, 2018. |
56 |
LIN Y, TAYLOR S, LI H P, et al. Advances toward bioapplications of carbon nanotubes. Journal of Materials Chemistry, 2004, 14 (4): 527- 541.
doi: 10.1039/b314481j |
57 |
TAN K B, VAKILI M, HORRI B A, et al. Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Separation and Purification Technology, 2015, 150, 229- 242.
doi: 10.1016/j.seppur.2015.07.009 |
58 | 赵晓丽, 王珺瑜, 方蕾, 等. 人工合成纳米材料在水环境中的聚沉行为研究进展. 矿物岩石地球化学通报, 2019, 38 (3): 522- 533. |
59 | 雷铖. 铁基纳米材料对水中有机污染物的去除作用及藻类毒性效应 [D]. 杭州: 浙江大学, 2019. |
60 | FRENCH R A, JACOBSON A R, KIM B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental Science & Technology, 2009, 43 (5): 1354- 1359. |
61 | 孙倩. 碳基纳米材料吸附溶解性有机物质的分子动力学模拟研究 [D]. 长春: 东北师范大学, 2013. |
62 | WANG Z Y, LI J, ZHAO J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga microcystis aeruginosa as affected by dissolved organic matter. Environmental Science & Technology, 2011, 45 (14): 6032- 6040. |
63 | 赵建, 曹雪松, 代燕辉, 等. 溶解有机质影响下氧化铜纳米颗粒对藻细胞的致毒机制 [C]//中国毒理学会. 第七次全国毒理学大会暨第八届湖北科技论坛, 2015: 265. |
64 |
XU Z X, LU J C, ZHENG X Y, et al. A critical review on the applications and potential risks of emerging MoS2 nanomaterials . Journal of Hazardous Materials, 2020, 399, 123057.
doi: 10.1016/j.jhazmat.2020.123057 |
[1] | 尹超, 李莹, 张婷月, 刘佳敏, 陈体达, 崔丹, 黄民生. 好氧反硝化菌的固定化及其效能研究[J]. 华东师范大学学报(自然科学版), 2021, 2021(4): 1-7. |
[2] | 同萌, 李茂田, 牛淑杰, 刘晓强, 林沐东, 郭慧婷, 候立军. 长江流域水库叶绿素及营养盐变化: 生物过滤器效应[J]. 华东师范大学学报(自然科学版), 2021, 2021(2): 63-72. |
[3] | 王丰毅, 陆健健. 胭脂鱼(Myxocyprinus asiaticus)幼鱼在河口区的生存适应性实验研究[J]. 华东师范大学学报(自然科学版), 2012, 2012(1): 19-26. |
[4] | 何常亮;翟万银;张红霞;常 江;张红锋;郭利民;陈航榕. 中空介孔硅球对血管内皮细胞的细胞毒性[J]. 华东师范大学学报(自然科学版), 2011, 2011(2): 142-151. |
[5] | 余文娟;王向晖;史芹;黄蕊. 纳米银对体外培养细胞附着形态及膜功能的影响[J]. 华东师范大学学报(自然科学版), 2010, 2010(2): 102-110. |
[6] | 邓可;杨世伦;刘素美;张经. 长江口崇明东滩冬季沉积物水界面营养盐通量[J]. 华东师范大学学报(自然科学版), 2009, 2009(3): 17-27. |
[7] | 高尚;陈诚;陶芳;戴兴春;黄民生;施华宏;王国华 . 白腐真菌产木质素降解酶及固定化载体研究 [J]. 华东师范大学学报(自然科学版), 2009, 2009(2): 72-77. |
[8] | 李 骏;耿 旭;张佩君;吴自荣. 利用固定化微生物细胞羟基化左旋乙基甾烯双酮[J]. 华东师范大学学报(自然科学版), 2006, 2006(2): 88-92. |
[9] | 金利通;鲜跃仲;张芬芬. 纳米电化学与生物传感器的研究进展(特约综述)[J]. 华东师范大学学报(自然科学版), 2005, 2005(5/6): 13-24. |
[10] | 周宇艳;;鲜跃仲;刘芳;胡艺;周丽绘;金利通. Au@SiO2修饰电极的制备及对Cyt c的直接电化学研究[J]. 华东师范大学学报(自然科学版), 2005, 2005(3): 48-52. |
[11] | 艾仕云;鲜跃仲;陈俊水;蔡琪;金利通. 纳米CuO/TiO2的光催化降解及其应用[J]. 华东师范大学学报(自然科学版), 2003, 2003(1): 62-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||