1 |
RAU L F. Extracting company names from text[C]// Proceedings of the Seventh IEEE Conference on Artificial Intelligence Application. IEEE, 1991.
|
2 |
宗成庆. 统计自然语言处理[M]. 2版. 北京: 清华大学出版社, 2013: 510-512.
|
3 |
巴曙松, 白海峰. 金融科技的发展历程与核心技术应用场景探索. 清华金融评论, 2016, (11): 99- 103.
|
4 |
LI J, SUN A, HAN J, et al. A survey on deep learning for named entity recognition [EB/OL]. (2020-03-18)[2021-09-22]. https://arxiv.org/pdf/1812.09449.pdf.
|
5 |
李嘉欣, 王平. 中文命名实体识别研究方法综述. 计算机时代, 2021, (4): 18- 21.
|
6 |
NADEAU D, SEKINE S. A survey of named entity recognition and classification. Lingvisticae Investigationes, 2007, 30 (1): 3- 26.
doi: 10.1075/li.30.1.03nad
|
7 |
SHARNAGAT R. Named entity recognition: A literature survey [EB/OL]. (2014-06-30)[2021-09-22]. https://www.cfilt.iitb.ac.in/resources/surveys/rahul-ner-survey.pdf.
|
8 |
KATIYAR A, CARDIE C. Nested named entity recognition revisited [C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1. New Orleans, Louisiana: Association for Computational Linguistics, 2018: 861-871.
|
9 |
LING X, WELD D. Fine-grained entity recognition [C]//Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. California: AAAI Press, 2012: 94-100.
|
10 |
王宁, 葛瑞芳, 苑春法, 等. 中文金融新闻中公司名的识别. 中文信息学报, 2002, 16 (2): 1- 6.
doi: 10.3969/j.issn.1003-0077.2002.02.001
|
11 |
沈嘉懿, 李芳, 徐飞玉, 等. 中文组织机构名称与简称的识别. 中文信息学报, 2007, 21 (6): 17- 21.
doi: 10.3969/j.issn.1003-0077.2007.06.003
|
12 |
XU Z, BURDICK D, RASCHID L. Exploiting lists of names for named entity identification of financial institutions from unstructured documents [EB/OL]. (2016-06-07)[2021-09-22]. https://arxiv.org/pdf/1602.04427.pdf.
|
13 |
BURDICK D, DE S, RASCHID L, et al. resMBS: Constructing a financial supply chain from prospectus [C]//Proceedings of the Second International Workshop on Data Science for Macro-Modeling. 2016: 1-6.
|
14 |
EDDY S R. Hidden markov models. Current Opinion in Structural Biology, 1996, 6 (3): 361- 365.
doi: 10.1016/S0959-440X(96)80056-X
|
15 |
KAPUR J N. Maximum-entropy models in science and engineering. International Biometric Society, 1992, 48 (1): 333- 334.
|
16 |
HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines. IEEE Intelligent Systems and Their Applications, 1998, 13 (4): 18- 28.
doi: 10.1109/5254.708428
|
17 |
LAFFERTY J, MCCALLUM A, PEREIRA F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data [C]//Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 2001: 282-289.
|
18 |
QUINLAN J R. Induction of decision trees. Machine Learning, 1986, 1 (1): 81- 106.
|
19 |
SHEN J Y, LI F, XU F Y, et al. Recognition of chinese organization names and abbreviations. Journal of Chinese Information Processing, 2007, 21 (6): 17- 21.
|
20 |
KASS R E, RAFTERY A E. Bayes factors. Journal of the American Statistical Association, 1995, 90 (430): 773- 795.
doi: 10.1080/01621459.1995.10476572
|
21 |
WANG S, XU R, LIU B, et al. Financial named entity recognition based on conditional random fields and information entropy [C]//2014 International Conference on Machine Learning and Cybernetics. Lanzhou: IEEE, 2014: 838-843.
|
22 |
NÚÑEZ J A, CINCOTTA P M, WACHLIN F C. Information entropy. Celestial Mechanics and Dynamical Astronomy, 1996, 64, 43- 53.
doi: 10.1007/BF00051604
|
23 |
BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model. The Journal of Machine Learning Research, 2003, (3): 1137- 1155.
|
24 |
MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space [EB/OL]. (2013-09-07)[2021-09-22]. https://arxiv.org/pdf/1301.3781.pdf.
|
25 |
JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification [EB/OL]. (2016-08-09)[2021-08-19]. https://arxiv.org/pdf/1607.01759.pdf.
|
26 |
PENNINGTON J, SOCHER R, MANNING C D. Glove: Global vectors for word representation [C]//EMNLP. 2014: 1532-1543.
|
27 |
PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations [EB/OL]. (2018-03-22)[2021-08-26]. https://arxiv.org/pdf/1802.05365.pdf.
|
28 |
RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL]. [2021-08-26]. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
29 |
DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2019-05-24)[2021-08-26]. https://arxiv.org/pdf/1810.04805.pdf.
|
30 |
YANG Z, DAI Z, YANG Y, et al. XLNet: Generalized autoregressive pretraining for language understanding[J]. Advances in Neural Information Processing Systems, 2019, 32: 5753-5763.
|
31 |
SUN Y, WANG S, LI Y, et al. ERNIE: Enhanced representation through knowledge integration [EB/OL]. (2019-04-19)[2021-08-26]. https://arxiv.org/abs/1904.09223.
|
32 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 25, 1097- 1105.
|
33 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [EB/OL]. (2016-04-30)[2021-08-26]. https://arxiv.org/pdf/1511.07122.pdf.
|
34 |
ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization [EB/OL]. (2015-02-19)[2021-08-26]. https://arxiv.org/pdf/1409.2329.pdf.
|
35 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
36 |
HUANG Z, XU W, YU K. Bidirectional lstm-crf models for sequence tagging [EB/OL]. (2015-08-09)[2021-08-26]. https://arxiv.org/pdf/1508.01991.pdf.
|
37 |
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. (2014-12-11)[2021-08-26]. https://arxiv.org/pdf/1412.3555v1.pdf.
|
38 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010.
|
39 |
SHEN Y, YUN H, LIPTON Z C, et al. Deep active learning for named entity recognition [EB/OL]. (2018-02-04)[2021-08-26]. https://arxiv.org/pdf/1707.05928.pdf.
|
40 |
李昱昕. 特定领域知识图谱的自动构建方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
41 |
彭小钰. 面向金融领域的命名实体识别算法的设计与实现 [D]. 武汉: 华中科技大学, 2019.
|
42 |
LIU Y. Named entity recognition using a semi-supervised model based on bert and bootstrapping [C]// Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence, 5th China Conference, CCKS 2020. 2021: 54-63.
|
43 |
刘宇瀚, 刘常健, 徐睿峰, 等. 结合字形特征与迭代学习的金融领域命名实体识别. 中文信息学报, 2020, 34 (11): 74- 83.
doi: 10.3969/j.issn.1003-0077.2020.11.010
|
44 |
ZHOU Z, ZHANG H. Research on entity relationship extraction in financial and economic field based on deep learning [C]// IEEE 4th International Conference on Computer and Communications. 2018: 2430-2435.
|
45 |
ZHAO L, LI L, ZHENG X. A bert based sentiment analysis and key entity detection approach for online financial texts [EB/OL]. (2020-01-14)[2021-08-26]. https://arxiv.org/abs/2001.05326.
|
46 |
LIU Z, HUANG D, HUANG K, et al. Finbert: A pre-trained financial language representation model for financial text mining [C]// Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. 2020: 5-10.
|
47 |
YANG H, CHEN Y, LIU K, et al. Dcfee: A document-level chinese financial event extraction system based on automatically labeled training data [C]// Proceedings of ACL 2018, System Demonstrations. 2018: 50-55.
|
48 |
赵军. 知识图谱 [M]. 北京: 高等教育出版社, 2018: 2-10.
|
49 |
陈晓军, 向阳. 企业风险知识图谱的构建及应用. 计算机科学, 2020, 47 (11): 237- 243.
doi: 10.11896/jsjkx.191000015
|
50 |
吕华揆, 洪亮, 马费成. 金融股权知识图谱构建与应用. 数据分析与知识发现, 2020, 4 (5): 27- 37.
|
51 |
CHENG D, YANG F, WANG X, et al. Knowledge graph-based event embedding framework for financial quantitative investments [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 2221-2230.
|
52 |
FAN M, CHENG D, YANG F, et al. Fusing global domain information and local semantic information to classify financial documents [C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020: 2413-2420.
|
53 |
RUDER S. An overview of multi-task learning in deep neural networks [EB/OL]. (2017-06-15)[2021-08-26]. https://arxiv.org/pdf/1706.05098.pdf.
|